Crowdproduktion von Trainingsdaten für autonome KFZ

Forschungsschwerpunkt: Mitbestimmung

Status: abgeschlossen

Projektende: 15.07.2018

Projektnummer: 2018-972-2

Projekttitel: Crowdproduktion von Trainingsdaten für autonome KFZ

Veröffentlichungen  |  Projektbeschreibung  |  Projektteam  |  Kontakt

 

Projektziel:

Seit 2017 steigt die Nachfrage nach hochpräzisen Trainingsdaten in der Automobilindustrie sprunghaft an. Um den selbstlernenden Algorithmen die Steuerung der selbstlenkenden Fahrzeuge anvertrauen zu können, braucht es viel menschliche Handarbeit, die von Crowdworkern weltweit erledigt wird. Während sich die Arbeitsbedingungen zum Teil verbessert haben, hat sich die Bezahlung weiter verschlechtert.

 

Veröffentlichungen:

Schmidt, Florian Alexander, 2019. Crowdproduktion von Trainingsdaten. Zur Rolle von Online-Arbeit beim Trainieren autonomer Fahrzeuge, Study 417, Düsseldorf: Hans-Böckler-Stiftung, 69 Seiten.

Zum Volltext


Schmidt, Florian Alexander, 2019. Crowdsourced Production of AI Training Data. How Human Workers Teach Self-Driving Cars How to See, Working Paper Forschungsförderung 155, Düsseldorf: Hans-Böckler-Stiftung, 31 Seiten.

Zum Volltext


Jung, Rainer und Stefan Lücking, . Crowdwork: Menschen trainieren Algorithmen – für ein bis zwei Euro die Stunde. Studie zu Plattformen für autonomes Fahren, Pressemitteilung vom 16.05.2019[online] https://www.boeckler.de/14_120138.htm, zuletzt abgerufen am 31.07.2019, .

Zum Volltext


Jung, Rainer und Stefan Lücking, . Crowdwork: Menschen trainieren Algorithmen – für ein bis zwei Euro die Stunde, Pressemitteilung vom 16.05.2019[online] https://idw-online.de/de/news?print=1&id=715808, zuletzt abgerufen am 31.07.2019, .

Zum Volltext


Chen, Angela, 2019. Desperate Venezuelans are making money by training AI for self-driving cars. Growing competition to develop self-driving cars—and the high stakes of getting things right—have created new crowdworking platforms that could be a lifeline for desperate workers, MIT Technology Review, S. 1-2.

Zum Volltext


Schmidt, Florian Alexander, 2019. Autonomes Fahren. Wer den Algorithmus füttert, Böckler Impuls, 06, S. 7-8.

Zum Volltext


 

Projektbeschreibung:

1. Kontext

Die in der Studie analysierte Entwicklung lässt sich vereinfacht in wenigen aufeinander folgenden Stufen darstellen: In den letzten zehn Jahren hat die KI-Forschung beachtliche Fortschritte im Bereich des maschinellen Lernens gemacht und damit völlig neue Produkte ermöglicht. Um die allerdings zugleich weiterhin bestehenden Unzulänglichkeiten der KI aufzufangen, wird an verschiedenen Stellen im Entwicklungsprozess auf Crowdarbeit zurückgegriffen.

Seit 2012 wird das maschinelle Lernen dank Einsatz neuronaler Netze so schnell besser, dass am Horizont die Vision des vollautonomen Fahrens Konturen gewinnt und diverse Firmen in ein Wettrennen getreten sind, dieses Ziel als erste zu erreichen. Die dadurch stark gestiegene Nachfrage der Automobilindustrie nach Trainingsdaten, ohne die das autonome Fahren nicht möglich ist, verändert wiederum die Crowdsourcing-Branche. Neue Plattformen entstehen, mit neuen Arbeitsprozessen und weitreichenden Auswirkungen auf die Arbeitsbedingungen der Crowd.


2. Fragestellung

Die Kurzstudie war geleitet von vier Grundfragen:

1. Welche Automobilfirmen nutzen welche Crowd-Plattformen?

2. Wie wirkt sich deren Nachfrage auf die Crowdsourcing-Branche aus?

3. Wie verändert sich dadurch die Situation der Crowdworker_innen?

4. Handelt es sich bei der Crowdproduktion von Trainingsdaten um ein temporäres Phänomen oder eine langfristige Perspektive für Crowdworker_innen?

Die erste Frage konnte aufgrund rechtlich bindender Verschwiegenheitsklauseln der Autoindustrie leider nicht beantwortet werden.

Die zweite und dritte Frage werden in der Studie ausführlich analysiert. Die vierte Frage wird in der Diskussion und im Ausblick erörtert.


3. Untersuchungsmethoden

Die Studie basiert in erster Linie auf sechs explorativen Interviews mit den CEOs von Mighty AI, understand.ai, Playment, Hive, clickworker und Crowd Guru sowie fünf Interviews mit Crowdworker_innen der zu Mighty AI gehörenden Plattform Spare5.

Außerdem wurden Benutzerkonten auf verschiedenen Plattformen angelegt und stichprobenartig zur teilnehmenden Beobachtung genutzt. Zudem bestand Austausch mit einer professionellen Crowdworkerin auf Mechanical Turk, die dort zum Vergleich die Vergabepraxis von Trainingsdaten-Aufgaben beobachtete.

Weitere Quellen sind die Webseiten und Pressemitteilungen der Plattformen, KI-Podcasts, Branchentagungen wie die AutomotiveIT in Berlin, Presseberichte, insbesondere aus der Startup-Szene und aus Technologiemagazinen wie Wired und TechCrunch, sowie nicht zuletzt die Firmendatenbank CrunchBase und die Webtraffic-Erfassung alexa.com/siteinfo.


4. Darstellung der Ergebnisse

In der Studie wird gezeigt, wie die Autoindustrie indirekt die Arbeitsbedingungen in der Crowdsourcing-Branche verändert und warum dies so ist. Darüber hinaus werden die vielgestaltigen Wechselwirkungen und komplexen Schichtungen zwischen Crowd- und KI-Systemen erörtert.

Die folgenden Felder wurden als von der Nachfrage nach hochpräzisen Trainingsdaten besonders betroffen ausgemacht und analysiert:

1. Die Entstehung neuer Spezialplattformen für Crowd und KI, die janusköpfig mit jeweils verschiedenen Webpräsenzen und Firmennamen für Kunden und Crowd auftreten.

2. Die deutlich gestiegenen Investitionen der Plattformen in Qualitätsmanagement, Spezialwerkzeuge und Training der Crowd, sowie die hierdurch verschärfte Problematik der Scheinselbstständigkeit.

4. Das Problem der drastischen Schwankungen in der Nachfrage nach Trainingsdaten, welches durch die Crowd und auf Kosten der Crowd abgefedert wird.

5. Das Phänomen der globalen digitalen Wanderarbeiter, die auf der Suche nach Jobs zwischen den neuen Plattformen hin und her pendeln; unter besonderer Berücksichtigung der Menschen aus Venezuela, die auf einigen der neuen Plattformen inzwischen 75 % der Crowd stellen.


 

Projektleitung und Bearbeiter/in:

Projektleitung:

Dr. Florian Alexander Schmidt

 

Kontakt:

Dr. Stefan Lücking
Hans-Böckler-Stiftung
Forschungsförderung
E-Mail: stefan-luecking(at)boeckler.de

X

Hinweis zur Nutzung von Cookies auf dieser Website

Diese Website benutzt Cookies. Indem Sie die Website und ihre Angebote nutzen und weiter navigieren, akzeptieren Sie diese Cookies. Die Nutzung der Cookies können Sie in Ihren Browser-Einstellungen ändern. Wir benutzen außerdem Tracking-Cookies der Tracking-Tools Matomo und Webtrekk. Diese werden nur gesetzt, wenn Sie auf den „Einverstanden“-Button klicken. Solange Sie dies nicht tun, nutzen Sie die Website und Ihre Angebote, ohne dass die genannten Tracking-Tools aktiviert werden. Durch die Betätigung des Einverstanden-Buttons willigen Sie auch in das durch Facebook Insights getätigte Tracking auf der Facebook Fanpage der Hans-Böckler-Stiftung ein. Weitere Informationen finden Sie in unserer Datenschutzerklärung.


Einverstanden