

European policy space and priorities for sustainable growth

Zsolt Darvas

Bruegel and Corvinus University of Budapest

MACROECONOMICS OF SOCIO-ECOLOGICAL TRANSITION

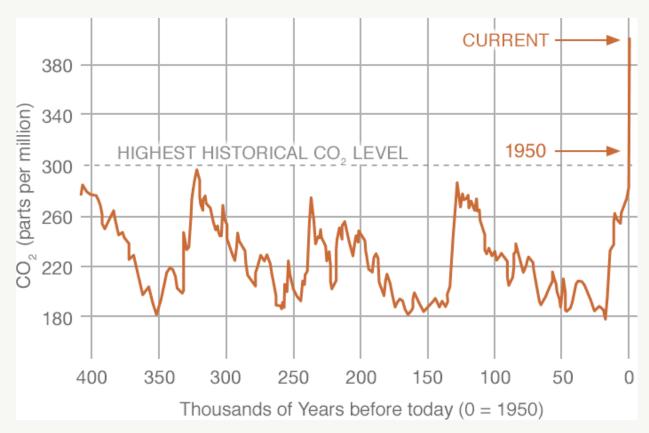
Forum for Macroeconomics and Macroeconomic Policies

IMK Macroeconomic Policy Institute

30 October 2021, Berlin

Three aspects of sustainability

Climate


Society

Public finances

Climate change has potentially devastating consequences

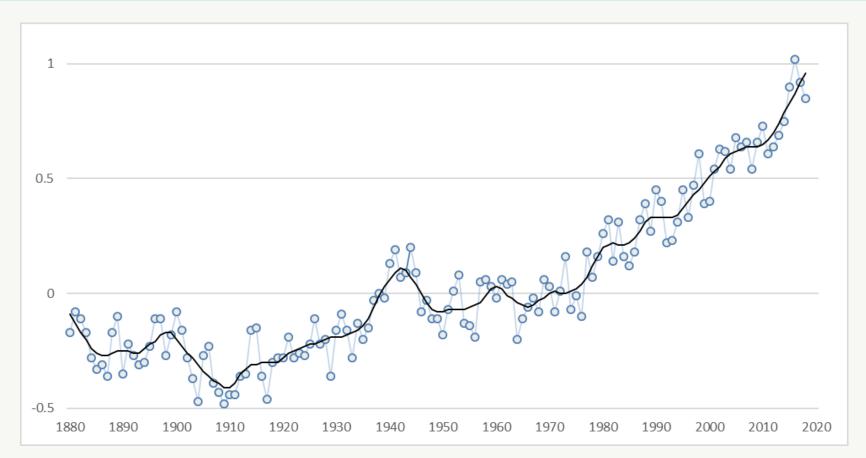
CO2 emissions in the past 400 thousands years

Data source: Atmospheric Infrared Sounder (AIRS).

Credit: NASA

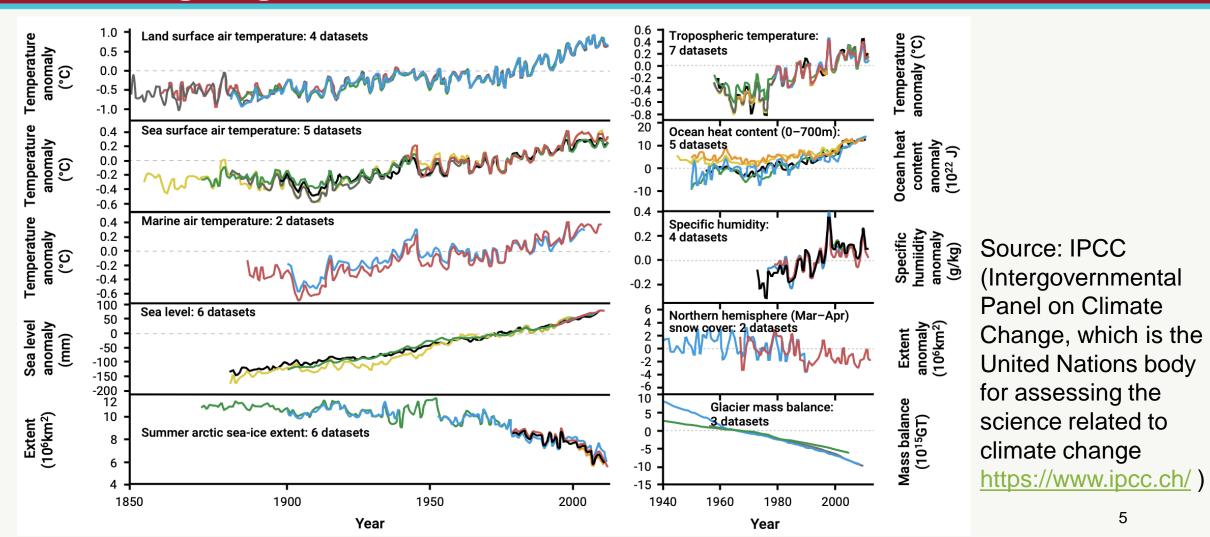
Climate change can trigger:

- Draughts
- Floods
- Storms
- Sea-level rise
- ...


- Food production
- Wildfires
- Water stress
- Productivity
- Fishery
- . . .

- Migration
- Health issues
- Famine
- Destroyed buildings
- . . .

Global temperature anomaly, 1880-2021 (Degree Celsius)



As a result of the unprecedented increase of heat-trapping CO2 concentration in the atmosphere, global average temperature has increased to date by approximately 1°C above pre-industrial levels.

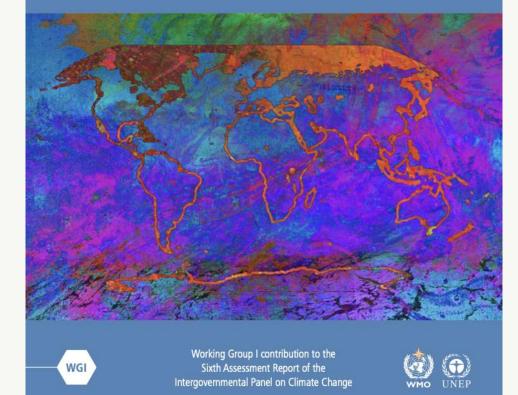
Source: NASA.

bruegel

Multiple independent indicators of a changing climate

New IPCC report sounds the alarm bell

- IPCC (Intergovernmental Panel on Climate Change) published on 9 August 2021 its most comprehensive and up-to-date report on global warming.
- Written by 200 scientists who rigorously evaluated more than 14,000 scientific papers on climate change and endorsed by government representatives from 195 countries.



ipcc

INTERGOVERNMENTAL PANEL ON Climate change

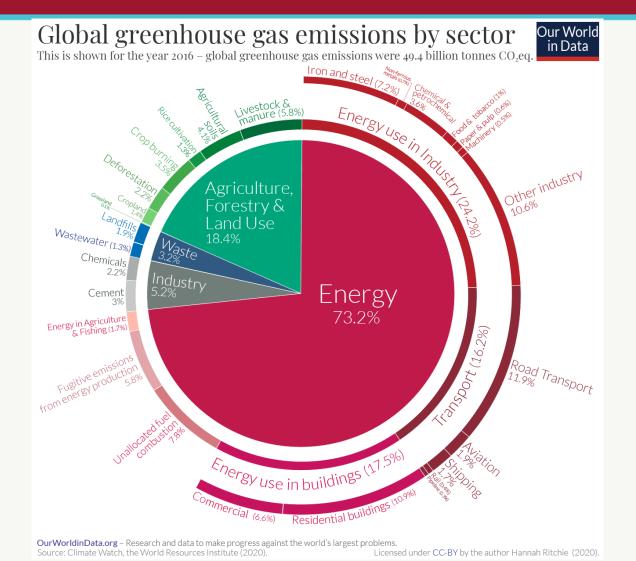
Climate Change 2021 The Physical Science Basis

Summary for Policymakers

New IPCC report: sounds the alarm bell

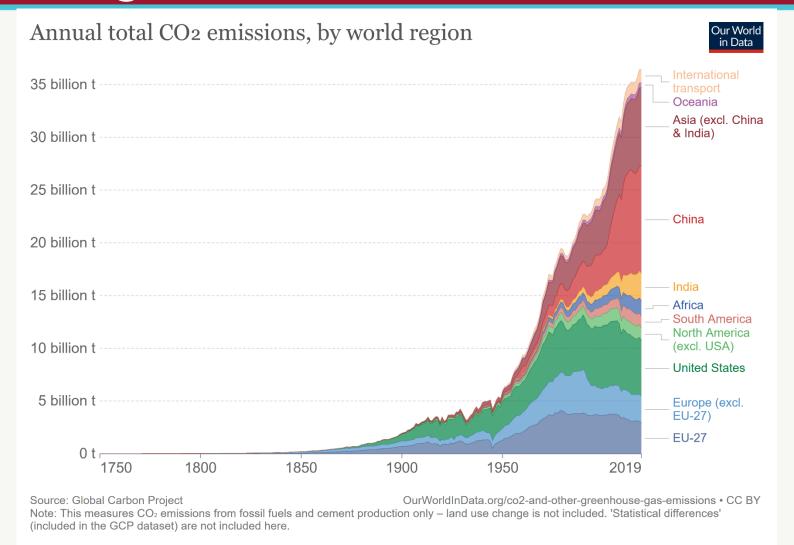
- Scientists expect the world to temporarily reach a level of warming of 1.5°C already by 2040, even in an optimistic scenario, leading to an increase in those extreme weather events that already characterize our time.
- If the world does not strengthen its climate action this decade but continues with current policies, the increase could be 2.0°C by 2060 and 2.7°C by the end of the century.
- The situation could even worsen if global warming triggers feedback loops capable of releasing even more climate-warming carbon emissions such as melting Arctic permafrost or depleting global forests. Under these high-emissions scenarios, the Earth could reach temperatures 4.4°C above the pre-industrial average by 2081-2100.

Mid-century GDP changes with different temperature rises and economic impact severity, relative to a no-climate change world


	Temperature rise scenario, by mid-century			
	Well-below 2°C increase	2.0°C increase	2.6°C increase	3.2°C increase
	Paris target	The likely range of global temperature gains		Severe case
Simulating for economic loss impacts from rising temperatures in % GDP, relative to a world without climate change (0°C)				
World	-4.2%	-11.0%	-13.9%	-18.1%
OECD	-3.1%	-7.6%	-8.1%	-10.6%
North America	-3.1%	-6.9%	-7.4%	-9.5%
South America	-4.1%	-10.8%	-13.0%	-17.0%
Europe	-2.8%	-7.7%	-8.0%	-10.5%
Middle East & Africa	-4.7%	-14.0%	-21.5%	-27.6%
Asia	-5.5%	-14.9%	-20.4%	-26.5%
Advanced Asia	-3.3%	-9.5%	-11.7%	-15.4%
ASEAN	-4.2%	-17.0%	-29.0%	-37.4%
Oceania	-4.3%	-11.2%	-12.3%	-16.3%

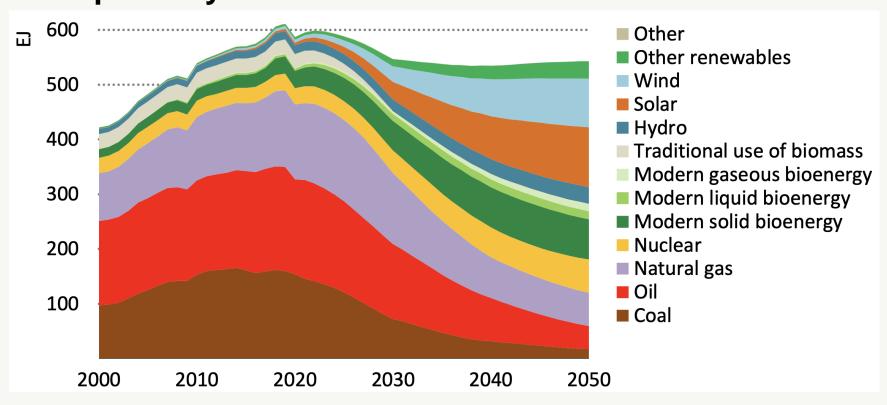
Note: Temperature increases are from pre-industrial times to mid-century, and relate to increasing emissions and/or increasing climate sensitivity (reaction of temperatures to emissions) from left to right.

Source: Swiss Re Institute "The economics of climate change: no action not an option", April 2021



bruegel

Where is the problem coming from? 2. World regions


What to do?

- Balancing GHG emissions and absorption from the atmosphere in carbon sinks
- 1. Strongly reduce global GHG emissions:
 - Reshape global energy system and mobility away from fossil fuels
 - Reduce overall energy use: energy efficiency and energy conservation
- Remove GHG emissions from the atmosphere and store them: [Carbon sink: any system that absorbs more CO2 than it emits]
 - Natural carbon sinks: soil, forests and oceans
 - Artificial sinks: geoengineering technologies not yet available

A radical transformation of the global energy mix is ahead of us

Global energy mix development in the International Energy Agency net zero pathway

Transition requires strong climate policies

Many policy tools

- Higher carbon prices/taxes
- Emission standards
- Subsidies
- Sector regulations

• . . .

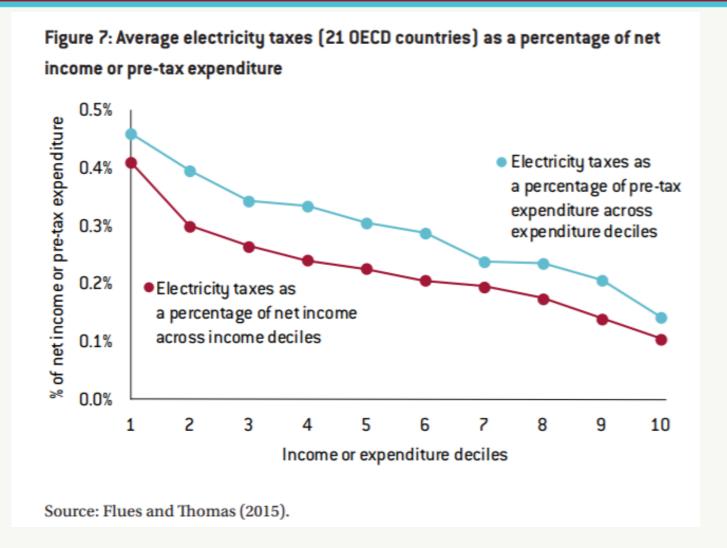
Different sectors

- Transport
- Electricity
- Heating
- Industry
- Agriculture

• . . .

Current energy price hike is a great news for the fight against climate change

- Higher gas/electricity prices incentive households and businesses:
 - To reduce energy use (e.g. isolation of buildings, switching to more efficient vehicles, travelling less)
 - To install renewable energy production devices (e.g. solar panels, heat pumps)
- Yet poorer segments of the society could struggle
- Governments rush to limit energy price hikes and offer compensations

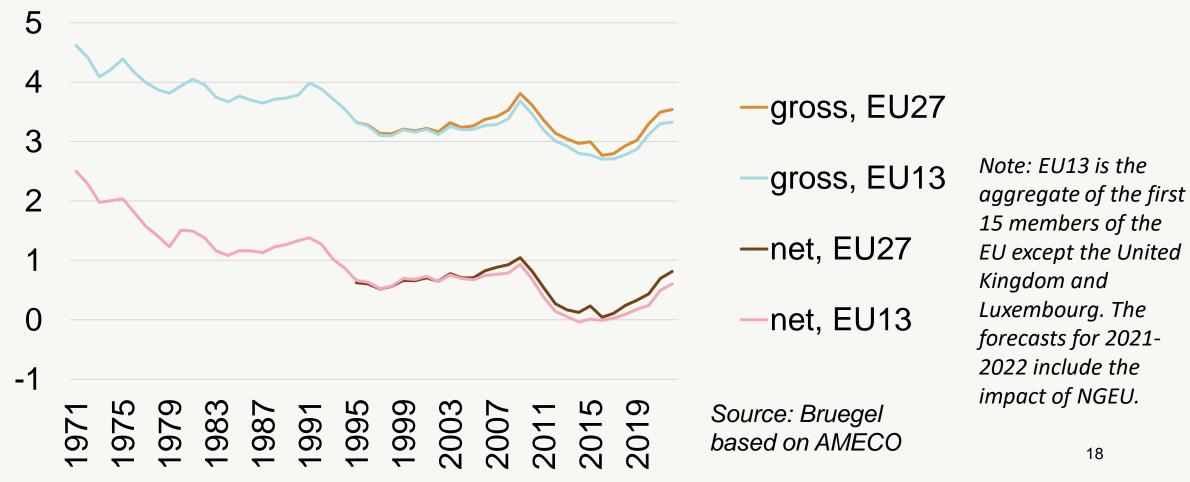

bruegel

Higher carbon prices can have adverse distributional effects

- Example: a significant carbon tax on road fuel:
 - Does barely affect the poor that own no car
 - Constitutes only a small share in the total expenditure of rich households
 - Might mainly affect middle-class car owners
 - Implies a strong rural/urban divide
 - Affects poor households that need a car and might not be able to buy an efficient one / while rich households might go electric
 - Will negatively affect petroleum refinery and other "brown" jobs
 - Will negatively affect the owners of oil reserves and other "brown" capital

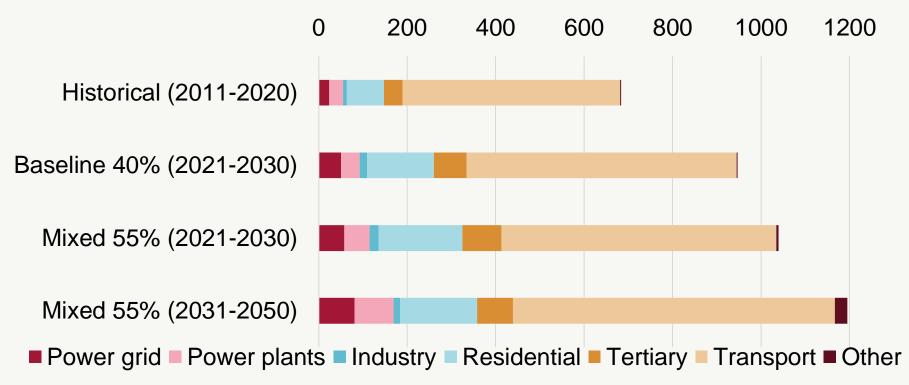
Poorer households already pay a higher share of their income on electricity taxes

Public acceptance of climate policies would be crucial: governments have to consider distributional effects


The European context

- Modest share in global emissions, yet EU should reach net zero and should lead the world
- Most new investment should be private, but additional public investment need to meet EU climate goals is around 0.5% - 1% of GDP annually
 - Fiscal consolidation will be necessary after extraordinary COVID-19 fiscal support of past years
 - Past consolidations resulted in major cuts in public investment
 - How to resolve this conflict?
- The current suspension of fiscal rules and the ongoing review of the European economic governance framework present an opportunity to discuss reforms

From 2009 to 2016, public investment declined by 1% of GDP in the EU

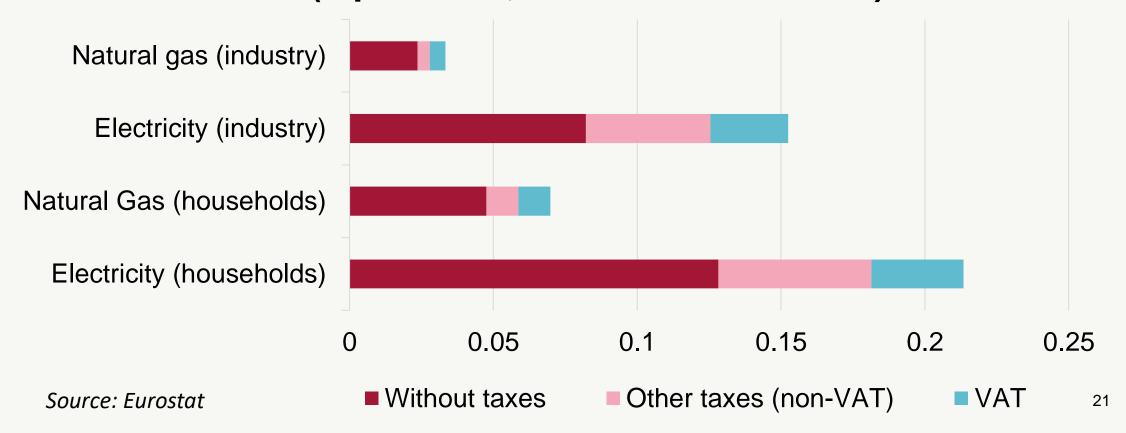

Gross and net public investment in the EU, % GDP, 1971-2022

Middle European Commission scenario: additional annual investment need is €360bn

Average annual green investment needs in the EU (€ billions, 2015 prices)

Baseline 40%: current policies for 40% emissions reduction by 2030.

Mixed 55%: expanded carbon pricing and moderately increased ambitions in energy regulations to achieve 55% emission cut by 2030. Beyond that, the estimates for 2031-2050 do not particular any assume policy change to reach net zero in 2050.


Public share in green investment could be around one-quarter

- 2019 National Energy and Climate Plans: public share in investment in energy and transport system was 28% on average
- The share of public funding can be reduced by regulation, taxation, higher carbon price
- A higher carbon emission price renders more green investment projects profitable, but has limitations (e.g. social acceptance, competitiveness)

Average energy prices for EU27 households and industry (€ per KWh, second half of 2020)

- Major net capital investments difficult to fund by cutting spending
- Accounting principle: spread investment cost over the service life of the capital good (net investment to be funded with deficits)
- But green investment has uncertain growth effects → debt sustainability concerns
- Failing to invest in climate adaptation entails substantial risks

How to increase green public investment when fiscal consolidation is needed?

- In a recent paper we discuss three options:
 - 1. A general relaxation of EU fiscal rules
 - 2. A centralised EU capacity to fund green investment, possibly via EU borrowing
 - 3. A green golden rule
- German discussion: circumvent the rules by e.g. setting up a special purpose vehicle in 2022 when fiscal rules are still suspended

^{*}Darvas, Zsolt and Guntram B. Wolff (2021): "A green fiscal pact: climate investment in times of budget consolidation", Bruegel Policy Contribution 18/2021, https://www.bruegel.org/2021/09/a-green-fiscal-pact-climate-investment-in-tigges-of-budget-consolidation/

Our proposal for a 'Green Fiscal Pact'

- Lowest possible speed of fiscal consolidation allowed by fiscal rules
- Green golden rule: exclude net green public investment from the deficit and debt calculations under the EU's fiscal rules (be mindful of greenwashing risks)
- Fiscally-weak countries should rely on Next Generation EU (NGEU) for their green investment (consider green golden rule after 2026 when NGEU expires)
- Incentives for private investment through appropriate taxation and regulation can help reduce the cost to public sector

Three key messages

- 1. Addressing climate change is an urgent task
- 2. Regulation and higher carbon price should play important roles, but social support sets limits
- 3. A green golden rule is the best approach to incentivize green public investment, but debt sustainability concerns remain in fiscally-weak countries

Thank you for your attention