Neoclassical and heterodox modelling of low-carbon transitions

Emanuele Campiglio^{1,2}

25th FMM Conference

Berlin, 28 October 2021

¹University of Bologna

²RFF-CMCC European Institute on Economics and the Environment

What are we trying to understand?

- $\bullet \ \, {\sf Climate \ change} \, \to \, {\sf Decarbonisation}$
 - $\bullet \ \ \, \text{Environmental pressures} \, \to \, \text{Sustainability transition}$

What are we trying to understand?

- ullet Climate change o Decarbonisation
 - Environmental pressures → Sustainability transition
- Structural change, but with unprecedented features
 - Purposive and time-constrained
 - Systemic dependence on fossil fuels
 - Large and complex societal system (e.g. financialisation)

What are we trying to understand?

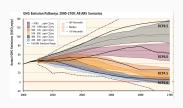
- ullet Climate change o Decarbonisation
 - ullet Environmental pressures o Sustainability transition
- Structural change, but with unprecedented features
 - Purposive and time-constrained
 - Systemic dependence on fossil fuels
 - Large and complex societal system (e.g. financialisation)

Two main research questions

- How to make the transition happen rapidly?
 - → How to finance the transition?
- How to make the transition happen smoothly?
 - ullet ightarrow How to avoid macro-financial disruptions?

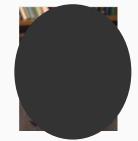
What tools do we have?

- Nordhaus and DICE model (1992)
 - Aim: look for optimal transition paths with micro-founded models

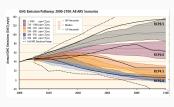


William Nordhaus

- Nordhaus and DICE model (1992)
 - Aim: look for optimal transition paths with micro-founded models
- → Large-scale numerical Integrated Assessment Models (IAMs)
 - Technological heterogeneity
 - Foundations of IPCC scenarios
 - Ramsey growth framework



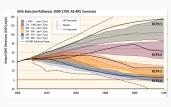
William Nordhaus



IPPC AR5 (2014)

- Nordhaus and DICE model (1992)
 - Aim: look for optimal transition paths with micro-founded models
- → Large-scale numerical Integrated Assessment Models (IAMs)
 - Technological heterogeneity
 - Foundations of IPCC scenarios
 - Ramsey growth framework
- → Analytical IAMs
 - Aiming for analytical results (e.g. Golosov et al. 2014)

William Nordhaus



IPPC AR5 (2014)

- Nordhaus and DICE model (1992)
 - Aim: look for optimal transition paths with micro-founded models
- → Large-scale numerical Integrated Assessment Models (IAMs)
 - Technological heterogeneity
 - Foundations of IPCC scenarios
 - Ramsey growth framework
- → Analytical IAMs
 - Aiming for analytical results (e.g. Golosov et al. 2014)
- Computable General Equilibrium (CGE) models
 - Multi-regional perspective

William Nordhaus

IPPC AR5 (2014)

Enters the macro-financial dimension

- Additional research drivers
 - ullet GFC o Better understanding of financial dynamics needed
 - Dissatisfaction with neoclassical econ reductionism
 - $\bullet \ \ {\sf Climate\ change\ signals} \to {\sf Transition\ modelling\ urgent}$

Enters the macro-financial dimension

- Additional research drivers
 - ullet GFC o Better understanding of financial dynamics needed
 - Dissatisfaction with neoclassical econ reductionism
 - Climate change signals → Transition modelling urgent
- Few tools up to the task
 - IAMs/CGE lacked a macro/finance dimension
 - Environmental/ecological econ not interested in macro
 - Neoclassical/heterodox macro not interested in environment
 - System dynamics at the margin of economics
 - Lack of data and empirical analysis
 - Lack of policy and institutional space

Enters the macro-financial dimension

- Additional research drivers
 - ullet GFC o Better understanding of financial dynamics needed
 - Dissatisfaction with neoclassical econ reductionism
 - Climate change signals → Transition modelling urgent
- Few tools up to the task
 - IAMs/CGE lacked a macro/finance dimension
 - Environmental/ecological econ not interested in macro
 - Neoclassical/heterodox macro not interested in environment
 - System dynamics at the margin of economics
 - Lack of data and empirical analysis
 - Lack of policy and institutional space
- ullet \to New research in development

- Qualitative analysis of possible transition futures
 - Conceptual frameworks (e.g. Semieniuk et al. 2021) Details
 - Socio-technical transition theory Details

- Qualitative analysis of possible transition futures
 - Conceptual frameworks (e.g. Semieniuk et al. 2021)
 - Socio-technical transition theory Details
- Empirical work
 - Financial asset pricing (e.g. Bolton and Kacperczyk 2021)
 - Committed emissions analysis (e.g. Tong et al. 2019)
 - Network analysis (e.g. Cahen-Fourot et al. 2021) Details

- Qualitative analysis of possible transition futures
 - Conceptual frameworks (e.g. Semieniuk et al. 2021) Details
 - Socio-technical transition theory Details
- Empirical work
 - Financial asset pricing (e.g. Bolton and Kacperczyk 2021)
 - Committed emissions analysis (e.g. Tong et al. 2019)
 - Network analysis (e.g. Cahen-Fourot et al. 2021)
- Policy and institutional strategies
 - Policy evaluation/design/testing (e.g. Dafermos et al. 2020)
 - Institutional implications (e.g. Baer et al. 2021) Details

- Qualitative analysis of possible transition futures
 - Conceptual frameworks (e.g. Semieniuk et al. 2021)
 - Socio-technical transition theory
 Details
- Empirical work
 - Financial asset pricing (e.g. Bolton and Kacperczyk 2021)
 - Committed emissions analysis (e.g. Tong et al. 2019)
 - Network analysis (e.g. Cahen-Fourot et al. 2021) Details
- Policy and institutional strategies
 - Policy evaluation/design/testing (e.g. Dafermos et al. 2020)
 - Institutional implications (e.g. Baer et al. 2021) Details
- Macro/transition modelling
 - Neoclassical (equilibrium) vs complexity (non-equilibrium) modelling Details

- Large-scale IAMs
 - Probably too complex to add macro/financial features
 - But: model coupling (e.g. WITCH-DSK; NGFS ensemble)

- Large-scale IAMs
 - Probably too complex to add macro/financial features
 - But: model coupling (e.g. WITCH-DSK; NGFS ensemble)
- Analytical IAMs
 - Inclusion of limited macro dimensions possible, e.g. physical asset stranding

- Large-scale IAMs
 - Probably too complex to add macro/financial features
 - But: model coupling (e.g. WITCH-DSK; NGFS ensemble)
- Analytical IAMs
 - Inclusion of limited macro dimensions possible, e.g. physical asset stranding
- RBC/DSGE macro
 - Take NK workhorses and add emissions + climate damages
 - Plenty of papers coming out (see Annicchiarico et al. 2021)
 - Policy testing under shocks

- Large-scale IAMs
 - Probably too complex to add macro/financial features
 - But: model coupling (e.g. WITCH-DSK; NGFS ensemble)
- Analytical IAMs
 - Inclusion of limited macro dimensions possible, e.g. physical asset stranding
- RBC/DSGE macro
 - Take NK workhorses and add emissions + climate damages
 - Plenty of papers coming out (see Annicchiarico et al. 2021)
 - · Policy testing under shocks
- Financial macro (CAPM):
 - Climate+macro uncertainty (volatility, tipping points)
 - Green/dirty risk premiums (e.g. Hambel et al. 2020)

Complexity macro-financial transition modelling

- Stock-flow consistent (SFC) models
 - Balance sheets of institutional sectors + behavioural functions
 - Testing of policies (e.g. Dafermos and Nikolaidi 2021)
 - + large macro-econometric models (e.g. E3ME)
 - + other PK modelling

Complexity macro-financial transition modelling

- Stock-flow consistent (SFC) models
 - Balance sheets of institutional sectors + behavioural functions
 - Testing of policies (e.g. Dafermos and Nikolaidi 2021)
 - + large macro-econometric models (e.g. E3ME)
 - + other PK modelling
- Agent-based models (ABMs)
 - Similar to SFC in spirit, but multiple interacting agents
 - Can incorporate climate and transition variables (e.g. Lamperti et al. 2019)

Complexity macro-financial transition modelling

- Stock-flow consistent (SFC) models
 - Balance sheets of institutional sectors + behavioural functions
 - Testing of policies (e.g. Dafermos and Nikolaidi 2021)
 - + large macro-econometric models (e.g. E3ME)
 - + other PK modelling
- Agent-based models (ABMs)
 - Similar to SFC in spirit, but multiple interacting agents
 - Can incorporate climate and transition variables (e.g. Lamperti et al. 2019)
- Diffusion models
 - Discrete choice theory, innovation (e.g. Mercure et al. 2012)
 - Heterogeneity without agents

What's missing?

A more nuanced theory of expectations

- Transition expectations key in defining transition pathways
 - E.g. future mitigation policies? Technological progress?

A more nuanced theory of expectations

- Transition expectations key in defining transition pathways
 - E.g. future mitigation policies? Technological progress?
- Expectations key features
 - Forward-looking with finite horizon
 - Biased
 - Heterogeneous

A more nuanced theory of expectations

- Transition expectations key in defining transition pathways
 - E.g. future mitigation policies? Technological progress?
- Expectations key features
 - Forward-looking with finite horizon
 - Biased
 - Heterogeneous
- Current approaches (+ exceptions):
 - Neoclassical: forward-looking, infinite horizon, representative + inter-temporal optimisation
 - Complexity: adaptive, 1-period horizon, heterogeneous + macro-econometric relations

Expectations: potential ways forward

- Untapped more recent approaches
 - Diagnostic expectations (e.g. Gennaioli and Schleifer 2018)
 - Heterogeneous expectations (e.g. Hommes 2021)

Expectations: potential ways forward

- Untapped more recent approaches
 - Diagnostic expectations (e.g. Gennaioli and Schleifer 2018)
 - Heterogeneous expectations (e.g. Hommes 2021)
- Ongoing work (with Cahen-Fourot, Daumas, Miess, Yardley)
 - Forward-looking transition (capital stranding) expectations
 - Heterogeneity of expectations increase in psychological time
 - Finite planning horizon and no optimisation
 - → Carbon intensity of capital investment today Details
 - ullet o Heterogeneous narratives affect transition speed

Expectations: potential ways forward

- Untapped more recent approaches
 - Diagnostic expectations (e.g. Gennaioli and Schleifer 2018)
 - Heterogeneous expectations (e.g. Hommes 2021)
- Ongoing work (with Cahen-Fourot, Daumas, Miess, Yardley)
 - Forward-looking transition (capital stranding) expectations
 - Heterogeneity of expectations increase in psychological time
 - Finite planning horizon and no optimisation
 - → Carbon intensity of capital investment today Details
 - $\bullet \ \to \mathsf{Heterogeneous} \ \mathsf{narratives} \ \mathsf{affect} \ \mathsf{transition} \ \mathsf{speed}$
- Ongoing work (with Lamperti, Terranova) Details
 - Diverse beliefs on credibility of policy commitment
 - Policy-makers default on commitments for high transition costs
 - ullet ightarrow Policy volatility delays the transition via beliefs' switching

Inclusion of uncertainty

- Low-carbon transition riddled with uncertainties
 - Climate risks, tipping points
 - Technological progress
 - Future policy implementation

Inclusion of uncertainty

- Low-carbon transition riddled with uncertainties
 - Climate risks, tipping points
 - Technological progress
 - Future policy implementation
- Recent developments in analytical IAMs and CAPM
 - Ongoing work (with Dietz, Venmans): Analytical IAM with stranding costs, learning and uncertainty (Brownian motions and climate/macro disasters)
 - Computational and analytical limits + no insights on what could go wrong

Inclusion of uncertainty

- Low-carbon transition riddled with uncertainties
 - Climate risks, tipping points
 - Technological progress
 - Future policy implementation
- Recent developments in analytical IAMs and CAPM
 - Ongoing work (with Dietz, Venmans): Analytical IAM with stranding costs, learning and uncertainty (Brownian motions and climate/macro disasters)
 - Computational and analytical limits + no insights on what could go wrong
- SFC/ABM:
 - Radical uncertainty, but no explicit treatment of uncertainty sources

Inclusion of network effects

- Network effects in economic/transition dynamics
 - Physical impacts and mitigation policies propagate via production/financial networks

Inclusion of network effects

- Network effects in economic/transition dynamics
 - Physical impacts and mitigation policies propagate via production/financial networks
- Research in the field mostly:
 - Static
 - Empirical
 - Looking at separate networks

Inclusion of network effects

- Network effects in economic/transition dynamics
 - Physical impacts and mitigation policies propagate via production/financial networks
- Research in the field mostly:
 - Static
 - Empirical
 - Looking at separate networks
- Ways forward:
 - Production networks literature (e.g. Acemoglu and Azar, 2020)
 - Dynamic network modelling (IO/CGE/ABM)
 - Multi-layer networks (production + financial)

Inclusion of network effects

- Network effects in economic/transition dynamics
 - Physical impacts and mitigation policies propagate via production/financial networks
- Research in the field mostly:
 - Static
 - Empirical
 - Looking at separate networks
- Ways forward:
 - Production networks literature (e.g. Acemoglu and Azar, 2020)
 - Dynamic network modelling (IO/CGE/ABM)
 - Multi-layer networks (production + financial)
- Ongoing work (with Massoni, Trsek)
 - IO 'dynamic' setting (input substitution + demand effects + tax redistribution)
 - How does a 40\$ carbon tax change GVC positioning?

Conclusions

- Multi-dimensional work on the macro/financial implications of low-carbon transitions
 - Conceptual, empirical, policy & institutions, modelling
 - Much research coming out, but the best is probably yet to come

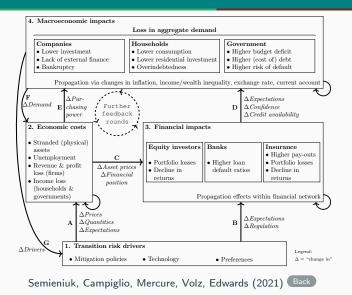
Conclusions

- Multi-dimensional work on the macro/financial implications of low-carbon transitions
 - Conceptual, empirical, policy & institutions, modelling
 - Much research coming out, but the best is probably yet to come
- Several promising avenues:
 - Expectations, uncertainty, networks
 - But also: behavioural data, asset pricing (SFC/ABM approach?), distribution, post-growth, and others

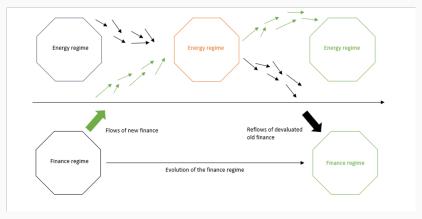
Conclusions

- Multi-dimensional work on the macro/financial implications of low-carbon transitions
 - Conceptual, empirical, policy & institutions, modelling
 - Much research coming out, but the best is probably yet to come
- Several promising avenues:
 - Expectations, uncertainty, networks
 - But also: behavioural data, asset pricing (SFC/ABM approach?), distribution, post-growth, and others
- Pluralism and cross-fertilisation needed
 - To each method its own

Thank you!

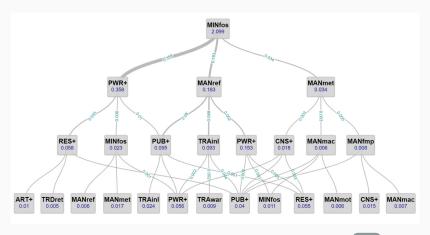

Thank you!

emanuele.campiglio@unibo.it

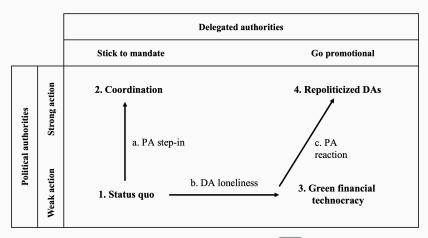

Presentation adapted from: Campiglio and van der Ploeg (forthcoming on REEP)

Support slides

Low-carbon macro-financial transitions risks



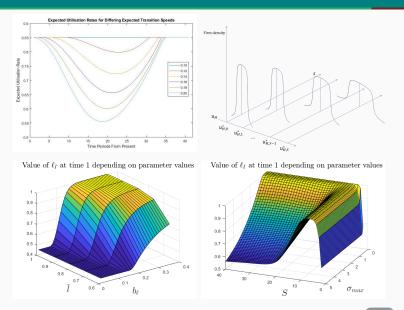
Co-evolution of energy and financial regimes


Campiglio, Deyris, Geels and Schroeder (in development) Back

Cascades of physical capital stranding

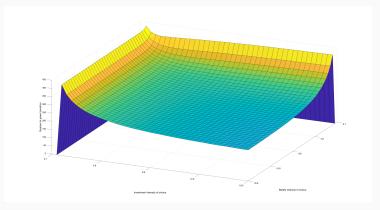
Cahen-Fourot, Campiglio, Godin, Kemp-Benedict, Trsek (2021) Back

Institutional scenarios in Europe

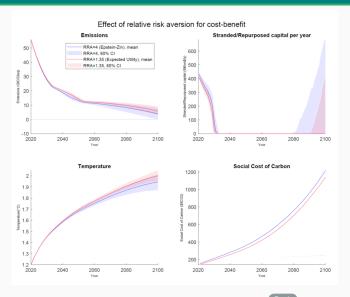

Baer, Campiglio, Deyris (2021) Back

Two main methodological avenues

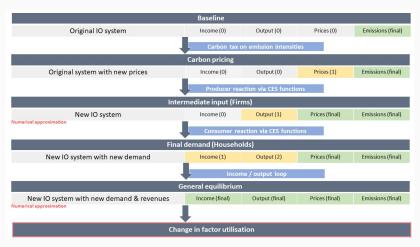
	Equilibrium	Non equilibrium
Behaviour drivers	Intertemporal optimisation of a welfare function	Macro-econometric relations
Determination of output	Supply-driven: output (production) is allocated between different uses (consumption and investment) $Y{=}AKL$	Demand-driven: output (income) is determined by the expenditure desires (consumption and investment) $Y{=}C{+}I{+}G$
Expectations	Forward-looking expectations by rational agents	Adaptive expectations by agents in a context of deep uncertainty
Decisions	Rational	Routines in a context of deep uncertainty
Equilibrium	The system moves to an equilibrium state (balanced growth path)	There is not necessarily an equilibrium (cycles, emergent behaviours)
Money	Money as a 'veil' (banks as intermediaries)	Endogenous money (credit creation by commercial banks)
Modelling approaches	IAM, CGE, DSGE, CAPM	SD, SFC, ABM
Communities	Economics, Finance, Environmental/Energy Economics	Social sciences, Ecological/Evolutionary Economics



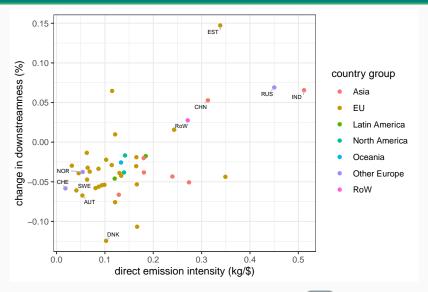
Expectations affect investment choices


Cahen-Fourot, Campiglio, Daumas, Miess, Yardley (in development)

Belief/investment switching speed affect transition duration


Campiglio, Lamperti, Terranova (in development) Back

Optimal transition pathways


Campiglio, Dietz, Venmans (in development)

Carbon pricing and GVC positioning (I)

Campiglio, Massoni, Trsek (in development) Back

Carbon pricing and GVC positioning (II)

Campiglio, Massoni, Trsek (in development)