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Abstract: The paper investigates the relationship between demand, innovation and 
research intensity in different groups of industries. Results reported in the paper indicate 
that demand exerts a positive and significant impact on innovation, and that this impact 
is stronger in high-tech industries than in low-tech industries. The paper also provides 
evidence that demand does not impact on research intensity, despite its impact on 
innovation. This finding holds both for low-tech and high-tech industries, using both 
R&D to value added and patents per millions of hours worked as measures of research 
intensity. This result points out that research intensity is not influenced by demand 
growth, but most likely depends on each country’s capacity to develop a mature National 
Innovation System. 
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1. Introduction 
 
The Schumpeterian literature on economic growth suggests that research intensity is an 
important determinant of productivity growth. Following the developments of 
endogenous growth theory, several studies sought to investigate the empirical 
relationship between innovative activity and long-term productivity growth. As Jones 
(1995) has shown, gross innovative activity (measured by R&D expenditure or patent 
counts) does not have a significant impact on productivity growth. Nonetheless, 
subsequent studies revealed that research intensity (R&D to output or patents per 
worker) is normally found to exert a positive and significant impact on long-term 
productivity growth (e.g. Ha and Howitt, 2007; Madsen, 2008). 

The Kaldorian literature on economic growth, however, stresses that demand 
growth is the main determinant of productivity growth. Kaldor (1966) attributed this 
impact to both static and dynamic increasing returns to scale (such as learning-by-doing 
and induced innovation), which result in productivity growth in the long term. After 
Kaldor’s (1966) seminal paper on the relationship between demand growth and 
productivity growth, empirical investigations using different methods and covering 
different countries and time periods confirmed that demand growth has indeed a positive 
and significant effect on productivity growth (e.g. McCombie and Thirlwall, 1994; 
McCombie, Pugno and Soro, 2002).	

More recently, Romero and Britto (2017) showed that although demand growth 
is crucial for productivity growth, in sectors or countries with higher research intensity, 
productivity growth presents a stronger response to demand growth. The authors carried 
out a thorough empirical investigation combining the insights of the Schumpeterian and 
the Kaldorian macroeconomic approach to long-term growth. Their results indicate that 



research intensity is not relevant for long-term growth on its own, but that it increases 
the response of productivity growth to demand growth. Moreover, the authors showed 
also that this effect is similar both in low-tech and in high-tech industries, while demand 
growth exerts a stronger independent effect on productivity growth in the high-tech 
sector. 

In Romero and Britto’s (2017) paper, research intensity is assumed to be an 
exogenous variable. According to them, the level of research intensity of each country is 
determined by the country’s capacity to develop a mature National Innovation System 
(e.g. Nelson, 1993; Lundvall, 1992). They argue that the development of this system is 
not explained by demand growth. 	

Nonetheless, a large number of works point out that demand growth influences 
innovation. According to Schmookler (1966), demand indicates social needs, providing a 
direction and an incentive for innovation. Moreover, demand growth increases the 
potential returns to innovative activity. Schmookler (1966) provided the first empirical 
evidence of the influence of demand upon innovation. Using sector-level data, he found 
a strong positive relationship between investment in capital goods-using industries and 
patents granted by capital goods-producer industries. Thus, his results indicate that the 
direction of causality runs from demand to innovation. After his seminal findings, several 
other empirical investigations confirmed the importance of demand for innovation (e.g. 
Geroski and Walters, 1995; Piva and Vivarelli, 2007). 

If demand indeed impacts innovation, it is reasonable to suspect that demand 
might also impact on research intensity. Nonetheless, it is important to note that finding 
a positive impact of demand growth on innovative activity is not the same as finding that 
demand has a positive impact on research intensity. 

Despite the importance of research intensity in the Schumpeterian growth 
literature, and notwithstanding the fact that several papers have tested the relationship 
between demand and innovation, very few studies investigated the relationship between 
demand and research intensity. One notable exception is León-Ledesma’s (2002) paper, 
which provided some evidence that demand growth has no significant impact on 
research intensity.	

In this context, the objective of this paper is twofold. First, it aims to test the 
relationship between demand and innovative activity, measured by R&D and patents, 
taking into account differences between low-tech and high-tech industries. Second, it 
aims to test if demand impacts on research intensity as well. These relationships were 
investigated using disaggregate industry-level value added data from EU KLEMS to 
measure demand growth, R&D data from the ANBERD database, and patent data from 
USPTO (transposed to industry classification using Lybbert and Zolas’ (2014) 
methodology). The databased used comprises 12 industries, for 18 countries over 1976-
2006.	

The remainder of the paper is organized as follows. Section two discusses the 
empirical evidence related to both the relationships between demand and innovation, and 
between demand and research intensity. Section three analyses the empirical investigation 
carried out in the paper. Section four presents the concluding remarks. 

 
2. Demand, innovation and research intensity: theory and evidence 

 
In the seminal works of Schmookler (1966) and Myers and Marquis (1969), it is 

possible to establish two main mechanisms through which the dynamics of demand can 
impact innovative activity. Fontana and Guerzoni (2008) have called them the incentive 
effect and the uncertainty effect.  



The incentive effect of demand on innovation results from the increase in rents 
generated due to the innovation. When a firm innovates, it acquires a temporary 
monopoly over that innovation. This new monopoly power generates abnormal profits, 
with the firm’s individual demand function becoming less elastic and increasing the 
mark-up over unit costs. In this scenario, a rise in demand would increase the amount of 
monopoly rents that can be earned by an innovative firm, creating incentives to allocate 
more resources to innovative activity (Schmookler, 1966; Geroski and Walters, 1995; 
Fontana and Guerzoni, 2008). 

The uncertainty effect of demand on innovation works via reducing uncertainty 
about the innovations’ market performance. The characteristic novelty of an innovation, 
together with the lack of information about user’s capabilities to benefit from it (von 
Tunzelmann and Wang, 2003), raises doubts about the profitability of investments in 
innovative activity (Garcia-Quevedo et al., 2016). In a market economy, the interaction 
between producers and consumers allows for a mutual exchange of information. In this 
sense, demand is a source of knowledge that helps to diminish the uncertainty about the 
success of new products and services. Hence, a rise in demand increases the flow of 
information to the firm and fosters innovative activity (Myers and Marquis, 1969; Von 
Hippel, 1978; Fontana and Guerzoni, 2008). 

The importance of demand for innovation is not undisputed, and several 
critiques have been raised about this relationship. On the one hand, it is argued that the 
concept of demand used to characterize the uncertainty effect is too broad and vague, 
making it difficult to measure and study (Mowery and Rosenberg, 1979; Dosi, 1982). On 
the other hand, some authors discuss the presence of reverse causality in measuring the 
incentive effect (Kleinknecht and Verspagen, 1990). In fact, this reverse causality is the 
basis of an alternative hypothesis about the determinants of innovation. Some authors 
postulate that innovation is based on advances in scientific knowledge and technological 
resources, which are independent of the dynamics of demand. In other words, 
innovation is autonomous in relation to demand (Dosi, 1982). Moreover, the 
introduction of new products, services or processes in the market by an individual firm 
will lead to an improvement of this firm’s economic performance, leading to higher 
demand (Kleinknecht and Verspagen, 1990).	

Since Schmookler’s (1966) seminal contribution, however, several studies have 
re-examined the impact of demand on innovation by improving his original database, 
changing dependent and independent variables and controlling for firm and sector level 
specificities (Scherer, 1982; Kleinknecht and Verspagen, 1990; Piva and Vivarelli 2007). 
The total amount of patents (or the variation in this amount) is certainly the most 
frequent measure of innovative activity in early studies of the relationship between 
demand and innovation (Scherer, 1982; Walsh 1984; Geroski and Walters, 1995). 
Nonetheless, as Kleinknecht and Verspagen (1990) underlined, patents are an innovation 
outcome. Hence, there is generally a time gap between the actual occurrence of 
innovative activity and the patent registration. Consequently, to verify that demand lags 
behind patents does not confirm causality running from demand to innovative activity, 
since it is not possible to know for certain when this activity occurred. Moreover, there 
could also be a time gap between innovations and patent applications, once firms may 
test their inventions in the market before fulfilling an application (Kleinknecht and 
Verspagen, 1990).	

More recently, with the introduction of Community Innovation Surveys (CIS), 
R&D investment has emerged as a more precise measure of innovative activity for 
analyzing the demand-innovation nexus. Since R&D is an innovation input, using this 
variable solves the possible endogeneity problem. A possible positive impact of 
innovation on demand can only occur after innovation has actually happened. Hence, it 



is hard to argue that R&D investment itself would raise demand, once it has to take place 
before the invention (Piva and Vivarelli, 2007). 

However, using R&D to measure innovative activity is not entirely free from 
problems. As Piva and Vivarelli (2007) point out, smaller firms innovate mainly through 
acquisition of external technology and may have no R&D investment at all. Thus, using 
R&D investment as a proxy can lead to an underestimation of total innovative activity. 

These caveats notwithstanding, regardless of the variable used to measure 
innovative activity, several studies have found evidence of the relevance of demand for 
innovation (e.g. Scherer, 1982; Brouwer and Kleinknetcht, 1999). Furthermore, several 
studies found evidence that the effects of demand on innovation vary in quality and in 
magnitude across different groups of firms (Piva and Vivarelli, 2007; Fontana and 
Guerzoni, 2008; Antonelli and Gehringer, 2015; Garcia-Quevedo et al, 2016). Hence, not 
accounting for these different effects would lead to an underestimation of the 
importance of demand in fostering innovation. 

Piva and Vivarelli (2007) have traced a series of characteristics that would make a 
firm’s innovation effort more susceptible to demand dynamics. The authors argue that 
favorable demand prospects increase expected profitability and enhance the capacity to 
finance innovative activity. In this perspective, the more dependent a firm’s financial 
stability is to demand scenarios, the higher will be the innovation/demand elasticity. 
Hence, firms exposed to tighter competition and liquidity and credit constraints would 
be more sensitive to current sales when deciding to invest in R&D. For similar reasons, 
diversified firms, firms heading a business group and firms benefiting from public 
subsidy would have lower innovation/demand elasticity (Piva and Vivarelli, 2007; Hall et 
al, 2016). 	
	 Investigating the demand constraint on innovation from a neoclassical 
perspective, several authors sought to test the cyclicality of R&D investment. The 
attempt was to incorporate what makes it pro-cyclical, when some theories predicts 
otherwise (Aghion and Saint-Paul, 1998). In these works, the main strategy was to 
incorporate firm and industry-level specific characteristics to explain the responses of 
innovation to output fluctuations. In general, the results present asymmetric responses of 
innovation to demand shocks. Firms would present a less pro-cyclical R&D behaviour 
when they have large sales share of R&D expenditure, are not exposed to price 
competition and are in the high-tech sector (Arvanitis and Woerter, 2013). However, 
they would present a more pro-cyclical pattern of R&D investment and patenting in 
industries with faster obsolescence and weaker patent protection (Fabrizio and Tsolmon, 
2014), and when firms have more biding liquidity and credit constraints (Ouyang, 2011; 
Aghion et. al., 2012). Therefore, these results mainly reinforce the ones found in the study 
of Piva and Vivarelli (2007). 	

Despite the extensive literature on the effects of demand on innovation, little 
evidence has been provided for the nexus between demand and research intensity. As 
mentioned in the introduction, one notable exception is León-Ledesma’s (2002) paper. 
The author built a model inspired in Schumpeterian and Kaldorian insights, and sough to 
test each relationship of the model using data for a sample of OECD countries. He 
estimated the impact of different variables on research intensity, and found that demand 
growth was not significant.	

It is important to note, however, that when research intensity is measured by the 
R&D to output ratio, the estimated elasticity provides information about the relationship 
between demand and research intensity. As highlighted by Brouwer and Kleinknetcht 
(1999), a firm’s R&D intensity can decline even if there is an increase in innovative 



activity, because the firm’s overall output can grow faster than R&D expenditure (the 
same would apply to R&D employment, when research intensity is measured as the 
number of researchers in relation to total employment). In this case, if the long-term 
demand elasticity of innovation is equal to one, then demand and innovation activity 
grow at the same rate, with all else constant, which implies that research intensity 
decreases over time, because the denominator is higher in absolute terms than the 
numerator. If this is the case, some other factor would be responsible for explaining the 
stability and the differences in research intensity across countries. 

When research intensity is measured by patents per worker (or by hours worked), 
however, the implications are different. As Kaldor (1966) has shown, the fact that 
demand growth impacts on productivity growth implies that output growth leads to a 
less than proportional increase in employment. Hence, if the long-term elasticity between 
demand and patents is equal to one, this implies that patents and output are growing at 
the same rate, ceteris paribus. Nonetheless, following the Kaldorian literature, 
employment should be growing at a lower rate. Hence, research intensity would be 
increasing. 
 
3. Empirical investigation 
 
3.1. Data	

Demand for the output of different industries was measured by valued added 
from the EU KLEMS Database. The sample used comprises 18 OECD countries 
(Australia, Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, 
South Korea, Italy, Japan, Netherlands, Portugal, Spain, Sweden, USA, and the United 
Kingdom), for which data on value added and number of hours worked by persons 
engaged in production are consistently available for 12 manufacturing industries over the 
period 1977-2006 (see O’Mahony and Timmer, 2009). Value added in constant 1995 
prices were transformed from national currencies to 1995 US dollars using industry-
specific PPPs from the Groningen Growth and Development Centre (GGDC) 
Productivity Level Database (Inklaar and Timmer, 2008). The fuel industry was dropped 
from the sample due to the industry’s well know measurement problems.  

The 12 industries were split into two samples following the OECD technological 
classification (OECD, 2003). Low-tech industries comprises 5 low-tech industries (Food, 
Textiles, Wood, Paper and Other Manufactures) plus 3 medium-low-tech industries 
(Plastics, Minerals and Metals). High-tech industries comprises 3 medium-high industries 
(Chemicals, Machinery and Transport) plus the high-tech industry (Electrical). 

The ratio of patents to the number of millions of hours worked by persons 
engaged in production was used as a measure of research intensity in each country i, 
industry j and period t. It is common to use patent data gathered from a single patent 
office to avoid differences in patent legislations between countries (see Soete, 1981; 
Nagaoca et al., 2010). USPTO is normally the most common choice, given that the US 
has the biggest market in the world, so that most high-value patents are registered there. 
Patents registered at the USPTO were analysed and the first 4 digits of the International 
Patent Classification (IPC) codes were extracted from each patent registration along with 
the country of origin of the first author of the patent and the year the patent was granted. 
Collecting information from each individual patent from the USPTO allowed employing 
the correspondence table between the IPC 2-digits and the International Standard 
Industrial Classification (ISIC) (Revision 3) 2-digits developed by Lybbert and Zolas 
(2014) to find the number of patents from each country in each of the industries of the 
EU KLEMS Database. The number of hours worked by persons engaged in production 
(in millions) used to calculate research intensity is from the EU KLEMS Database. 



As an alternative measure of research intensity, the ratio of R&D expenditure to 
value added was calculated using data from the OECD Analytical Business Enterprise 
Research and Development (ANBERD) Database, for the period 1976-2006. Data from 
1987 to 2006 are classified according to ISIC Rev. 3, while data from 1976 to 1986 are 
according at ISIC Rev. 2. At the level of aggregation used in this paper this does not 
represent a problem, since it is straightforward to make the data compatible.	

 
3.2. Descriptive analysis 

The aim of this paper is to investigate whether the effect of demand on 
innovation varies between technological sectors, and whether demand affects research 
intensity as well.  

As found in a number of studies, Figure 1 shows the positive correlation between 
demand and innovation. This figure highlights that this relationship is quite clear, taking 
both patents and R&D expenditure as proxy for innovation.  

Figure 2 shows that there is also a positive correlation between demand and 
research intensity, measured by R&D to value added and patents per millions of hours 
worked. Nonetheless, this relationship seems weaker than the one observed between 
demand and innovation. The fact that the correlation between demand and research 
intensity is less clear casts doubt about the validity of this relationship, highlighting the 
importance of this paper’s investigation. 	
 

Figure 1: Demand and Innovation 

 
Note: Averages over the period 1977-2006. 
Source: Authors’ elaboration.  
 

Figure 2: Demand and Research Intensity	

 
Note: Averages over the period 1976-2006. 
Source: Authors’ elaboration.  
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Figure 3 shows the correlations between demand and innovation in the low-tech 
and in the high-tech sectors. This figure indicates that this relationship seems to be valid 
for both sectors. Nonetheless, visually, it is not distinguishable if it is higher for one of 
them. The only clear difference is in terms of the intercept.  

 
Figure 3: Demand and Innovation by Technological Sector 
A. Low-Tech     B. High-Tech 

 

 
Note: Averages over the period 1976-2006. 
Source: Authors’ elaboration.  
 

3.3. Estimation strategy 
The regressions reported in this paper were estimated using panel data estimators 

for industries i in countries j at time t. The estimated regressions were:	
 
lnInovijt = 𝛽! + 𝛽!lnInovijt!! + 𝛽!ln𝑌ijt − 𝛽!ln𝑌ijt!! + 𝑢ijt    (1) 
lnRIijt = 𝛽! + 𝛽!lnRIijt!! − 𝛽!ln𝑌ijt + 𝛽!ln𝑌ijt!! + 𝑢ijt    (2) 
 
where Inov denotes innovation, which is measured either by the number of patents or the 
real expenditure on R&D in each industry. Y is the real value added, and RI is research 
intensity, measured either by R&D to value added or by patents per millions of hours 
worked. 	

There are two econometric issues involved in estimating these equations. First, it 
is necessary to control for unobserved fixed effects (FE). Second, it is necessary to deal 
with endogeneity between the dependent variable and: (i) its first lag, which is introduced 
as an explanatory variable; and (ii) the logarithm of value added, due to reverse causality.  

In the tests reported in this paper, these problems were addressed employing the 
System Generalised Method of Moments (SYS-GMM) estimator (Blundell and Bond, 
2000). This method employs a system of equations in levels and in differences to 
estimate the parameters, using as instruments the lags of the variables in differences and 
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in levels, respectively (see Roodman, 2009: 114). This is a Two-Step Feasible Efficient 
System GMM estimator, which controls for fixed effects via first differences. The two-
step approach is used to obtain a feasible efficient GMM estimator, given that GMM is 
inefficient in the presence of heteroskedasticity. In the first step a Two-Stage Least 
Square (2SLS) is regressed. The residuals from the first stage are then employed to form 
the weighting matrix that is used to eliminate heteroskedasticity, while in the second step 
the parameters are estimated satisfying the orthogonality conditions of the instruments, 
i.e. minimising the L moment conditions 𝐸[𝑍ijt𝑢ijt] = 0, where Z is the matrix that 
contains the L included and excluded instruments. The identification of the parameters 
using System GMM requires overidentification, tested using Hansen’s J Test, and no 
autocorrelation, tested using Arellano and Bond’s (1991) Autoregressive (AR) Test. 	

The database used in this paper comprises data for 12 industries, in 18 countries, 
during 30 years. Since the panel is for industries in each country, it has 216 units and 30 
years. To make this panel compatible with the small panel data assumption of the System 
GMM, 3-year averages were calculated, so that the final panel presents 216 units and 10 
time periods. It is important to note, however, that some years of R&D data are missing 
for Austria, Belgium, Denmark, Greece, South Korea, Portugal, Sweden, and the United 
Kingdom. Consequently, the results using R&D are reported for a robustness check, but 
the main analysis of the paper will be focused on the results found using patent data to 
measure innovation and research intensity. 
 
3.3. Results: all industries	
 The results reported in Table 1 indicate that output has a positive and significant 
impact on innovation, both when using patents and R&D to measure innovation. Table 
1 presents the estimates of equation (1) for the whole sample, i.e. considering all 
industries. The lag of output has a negative and significant coefficient in all regressions 
but the one where FE is used and innovation is measured by patents. The results using 
System GMM are very similar to the ones found using a simple Fixed Effects estimator. 
In both System GMM regressions the Arellano-Bond AR test and the Hansen J test 
suggest that the instruments used are valid. The main difference is that the estimated 
coefficients increase when System GMM is employed. 	

Most importantly, the estimated parameters using System GMM indicate that the 
long-run elasticity between demand and innovation slightly above one. This result does 
not allow to clearly state whether research intensity will tend to increase, decrease or 
remain stable as demand grows. 	

The estimated parameters using System GMM when research intensity is 
measured by patents per millions of hours worked, however, indicate that demand has a 
long-run impact on research intensity. The results once again show that the long-term 
elasticity of the relationship between demand and innovation slightly above one and the 
constant is not significant. Nonetheless, in this case, since employment tends to grow 
more slowly than value added, this elasticity implies that demand and innovation grow at 
the same rate, which is higher than that of employment. This means that the relationship 
between demand and research intensity is positive in the long run.	

Hence, using R&D to value added and patents per millions of hours worked 
generates contrasting results. In the first case, demand has no clear impact on research 
intensity. In the second case, demand seems to have a positive long-run impact on 
research intensity. These results highlight the importance of estimating equation (2) in 
order to obtain further information of whether demand has indeed no effect on research 
intensity in the long-term. 

 
 



Table 1: Demand and innovation - All Industries 
Dependent Variable Ln of R&D Ln of R&D Ln of Patents Ln of Patents 
Estimator FE Sys-GMM FE Sys-GMM 
Model (i) (ii) (iii) (iv) 

Ln of R&D (Lag) 0.536*** 0.829***   
 (0.0648) (0.0946)   

Ln of Demand 0.612*** 1.613*** 0.181*** 1.813** 
 (0.0982) (0.444) (0.0673) (0.702) 

Ln of Demand (Lag) -0.261*** -1.425*** -0.0245 -1.908** 
 (0.0957) (0.355) (0.0561) (0.820) 

Ln of Patents (Lag)   0.768*** 1.083*** 
   (0.0282) (0.131) 

Constant -1.101* -0.739 -0.715*** 0.342 
 	 (0.588) (0.583) (0.254) (0.695) 
     Long-term effect:  0.76 1.10 0.78 1.14 

Observations:  1585 1585 1937 1937 
R-squared 0.652  0.857  
Instruments/lags:   18/2-4  14/3 
A.-B. AR Test:   0.167  0.804 
Hansen J Test:   0.135  0.346 
Note: All regressions include time dummies. Robust standard errors between brackets. 
Significance: ***=1%; **=5%; *=10%.  
Source: Authors' elaboration 

 
Table 2: Demand and research intensity - All Industries 

Dependent Variable Ln of R&D/VA Ln of R&D/VA Ln of Pat./L Ln of Pat./L 
Estimator FE Sys-GMM FE Sys-GMM 
Model (i) (ii) (iii) (iv) 

Ln of R&D/VA (Lag) 0.538*** 0.815***   
 (0.0634) (0.0876)   

Ln of Demand -0.375*** 0.479 -0.162** 0.244 
 (0.0978) (0.368) (0.0731) (0.265) 

Ln of Demand (Lag) 0.261*** -0.460 0.223*** -0.166 
 (0.0982) (0.355) (0.0609) (0.271) 

Ln of Pat./L (Lag)   0.775*** 0.721*** 
   (0.0293) (0.0725) 

Constant -1.085* -0.781 -1.165*** -1.168*** 
  (0.586) (0.537) (0.313) (0.361) 
     Long-term effect:  -0.25 0.00 0.27 0.00 

Observations:  1585 1585 1937 1937 
R-squared 0.487  0.861  
Instruments/lags:   22/2-6  22/2-6 
A.-B. AR Test:   0.200  0.448 
Hansen J Test:   0.120  0.004 
Note: All regressions include time dummies. Robust standard errors between brackets. 
Significance: ***=1%; **=5%; *=10%.  
Source: Authors' elaboration 

 
The estimates of equation (2), reported in Table 2, suggest that current and past 

demand have no significant impact on research intensity in the long-term. Interestingly, 
the fixed effects regressions indicate that demand has a negative effect on research 
intensity, while its lag has a positive effect. Nonetheless, when simultaneity is controlled 
for using System GMM, current and past demand are no longer significant. Most 
importantly, this result holds for both measures of research intensity. The Arellano-Bond 



AR test and the Hansen J test indicate the validity of the instruments when R&D to 
value added is used to proxy research intensity. In the case of patents to millions of 
hours worked, however, the Hansen J test indicates that the instruments are not valid.	
 
3.4. Results: low-tech and high-tech sectors 

In this section, the discussion presented in the previous one is repeated, but now 
dividing the sample of industries into low-tech and high-tech industries. The objective of 
this division is to analyse whether these different groups of industries present different 
dynamics in terms of the relationship between demand, innovation and research intensity. 

The results for the relationship between demand and innovation in low-tech 
industries, presented in Table 3, are mixed. When R&D is used, results indicate that 
demand exerts a positive and significant impact on innovation. The System GMM 
estimates indicate once again that the long-term relationship is close to one, so that 
research intensity would be negatively affected by demand. The test statistics indicate that 
the instruments used are valid. When patents are used to measure innovation, however, 
the Hansen J test rejects once again the validity of the instruments, while current and 
past demand are not significant. 	

 
Table 3: Demand and innovation - Low-tech industries 

Dependent Variable Ln of R&D Ln of R&D Ln of Patents Ln of Patents 
Estimator FE Sys-GMM FE Sys-GMM 
Model (i) (ii) (iii) (iv) 

Ln of R&D (Lag) 0.519*** 0.779***   
 (0.0735) (0.0962)   

Ln of Demand 0.596*** 1.040** 0.0621 -0.259 
 (0.167) (0.466) (0.0983) (0.520) 

Ln of Demand (Lag) -0.175 -0.808* 0.0759 0.429 
 (0.184) (0.460) (0.0882) (0.590) 

Ln of Patents (Lag)   0.796*** 0.838*** 
   (0.0284) (0.0878) 

Constant -2.009* -0.996* -0.706 -1.034* 
  (1.137) (0.578) (0.439) (0.537) 
     Long-term effect:  1.24 1.05 0.00 0.00 

Observations:  1052 1052 1289 1289 
R-squared 0.574  0.859  
Instruments/lags:   20/2-5  20/2-5 
A.-B. AR Test:   0.466  0.762 
Hansen J Test:    0.070   0.001 
Note: All regressions include time dummies. Robust standard errors between brackets. 
Significance: ***=1%; **=5%; *=10%.  
Source: Authors' elaboration 

 
The results for the high-tech industries indicate that demand has a significant 

impact on innovation. Test statistics reported in Table 4 indicate that the instruments are 
valid in the System GMM regressions. When R&D is used to measure innovation, the 
long-term effect of demand on innovation is 0.7 using fixed effects, and jumps to 1.4 
using System GMM. When patents are used as the dependent variable, the long-term 
effect is 1.06 and 1.05, respectfully. Hence, in the case of the high-tech sector, the results 
suggest that demand has a significant effect on research intensity in the long run using 
both measures of research intensity. 

 
 



Table 4: Demand and innovation - High-tech industries 
Dependent Variable Ln of R&D Ln of R&D Ln of Patents Ln of Patents 
Estimator FE Sys-GMM FE Sys-GMM 
Model (i) (ii) (iii) (iv) 

Ln of R&D (Lag) 0.652*** 1.100***   
 (0.0784) (0.108)   

Ln of Demand 0.589*** 0.578** 0.329*** 0.915*** 
 (0.0918) (0.278) (0.0979) (0.251) 

Ln of Demand (Lag) -0.353*** -0.719*** -0.0747 -0.671** 
 (0.0968) (0.236) (0.0664) (0.295) 

Ln of Patents (Lag)   0.689*** 0.767*** 
   (0.0585) (0.0955) 

Constant 0.0147 0.773 -1.098** -1.258** 
  (0.370) (0.497) (0.419) (0.609) 
     Long-term effect:  0.68 1.41 1.06 1.05 

Observations:  533 533 648 648 
R-squared 0.848  0.861  
Instruments/lags:   14/2  22/3-7 
A.-B. AR Test:   0.081  0.280 
Hansen J Test:    0.438   0.152 
Note: All regressions include time dummies. Robust standard errors between brackets. 
Significance: ***=1%; **=5%; *=10%.  
Source: Authors' elaboration 

 
Table 5: Demand and research intensity - Low-tech industries 

Dependent Variable Ln of R&D/VA Ln of R&D/VA Ln of Pat./L Ln of Pat./L 
Estimator FE Sys-GMM FE Sys-GMM 
Model (i) (ii) (iii) (iv) 

Ln of R&D/VA (Lag) 0.522*** 0.717***   
 (0.0719) (0.113)   

Ln of Demand -0.398** -0.400 -0.392*** 0.033 
 (0.167) (0.516) (0.0979) (0.942) 

Ln of Demand (Lag) 0.337* 0.415 0.376*** 0.008 
 (0.188) (0.511) (0.0927) (0.967) 

Ln of Pat./L (Lag)   0.805*** 0.835*** 
   (0.0282) (0.133) 

Constant -1.989* -1.308* -0.496 -0.752 
  (1.135) (0.685) (0.408) (0.606) 
     LT effect:  -0.13 0.00 -0.08 0.00 

Observations:  1052 1052 1289 1289 
R-squared 0.461  0.873  
Instruments/lags:   22/2-6  18/04/06 
A.-B. AR Test:   0.476  0.779 
Hansen J Test:   0.193  0.062 
Note: All regressions include time dummies. Robust standard errors between brackets. 
Significance: ***=1%; **=5%; *=10%.  
Source: Authors' elaboration. 

 
The results reported in Tables 3 and 4 point out also that demand has a stronger 

effect on innovation in high-tech industries than in low-tech industries. When R&D is 
used to measure innovative activity, the long-term demand elasticity of innovation is 1.05 
for low-tech industries and 1.41 for high-tech industries. When patents are used to 
measure innovation, the results suggest that demand has no impact on innovation in the 



low-tech industries, while the long-term demand elasticity of innovation is 1.05 for high-
tech industries.  

The results for the relationship between demand and research intensity in the 
low-tech sector, reported in Table 5, are very similar to the ones reported in Table 2 for 
the sample of all industries. The fixed effects regressions indicate that demand has a 
negative effect on research intensity, while its lag has a positive effect. Using System 
GMM, current and past demand are no longer significant. The Arellano-Bond AR test 
and the Hansen J test indicate the validity of the instruments. 

The results for the relationship between demand and research intensity in the 
high-tech sector, reported in Table 6, are slightly different. The fixed effects regression 
using the logarithm of R&D to value added as the dependent variable indicates that 
demand has a negative effect on research intensity, while its lag has a positive effect, as in 
the low-tech sector. When patents per hours worked is used, the fixed effects regression 
indicates that lagged demand has a positive and significant impact on research intensity. 
In both cases, however, when System GMM is used, current and past demand become 
not significant. Instruments are valid in both System GMM regressions.  
 

Table 6: Demand and research intensity - High-tech industries 	
Dependent Variable Ln of R&D/VA Ln of R&D/VA Ln of Pat./L Ln of Pat./L 
Estimator FE Sys-GMM FE Sys-GMM 
Model (i) (ii) (iii) (iv) 

Ln of R&D/VA (Lag) 0.652*** 0.988***   
 (0.0783) (0.0525)   

Ln of Demand -0.396*** -0.0561 0.0863 0.303 
 (0.0931) (0.174) (0.0897) (0.376) 

Ln of Demand (Lag) 0.281*** 0.0413 0.120** -0.225 
 (0.0899) (0.169) (0.0595) (0.375) 

Ln of Pat./L (Lag)   0.660*** 0.707*** 
   (0.0671) (0.103) 

Constant 0.0415 0.234 -2.500*** -0.924 
  (0.380) (0.238) (0.536) (0.422) 
     LT effect:  -0.33 0.00 0.35 0.00 

Observations:  533 533 648 648 
R-squared 0.627  0.848  
Instruments/lags:   22/2-6  20/2-4 
A.-B. AR Test:   0.079  0.427 
Hansen J Test:   0.329  0.116 
Note: All regressions include time dummies. Robust standard errors between brackets. 
Significance: ***=1%; **=5%; *=10%.  

	

Source: Authors' elaboration 	
 

In sum, the System GMM regressions between demand and research intensity 
indicate that both for low-tech and for high-tech industries, demand has no significant 
effect on research intensity in the long term. These findings reinforce the results found 
for all industries altogether, reported in Table 2. Importantly, when low-tech and high-
tech industries are analysed separately, test statistics indicate the validity of the 
instruments.   
 
4. Concluding Remarks 

 
While the Schumpeterian literature on economic growth suggests that research 

intensity is an important determinant of productivity growth, the Kaldorian literature on 



economic growth stresses that demand growth is the main determinant of productivity 
growth. 

Romero and Britto (2017) showed, however, that although demand growth is 
crucial for productivity growth, in sectors and/or countries with higher research intensity, 
productivity growth presents a stronger response to demand growth. This approach 
implies assuming that research intensity is exogenous, i.e. not determined by demand 
growth. 

Since a large number of works point out that demand growth influences 
innovation, it is reasonable to suspect that demand might also impact on research 
intensity. Despite the importance of research intensity in the Schumpeterian growth 
literature, and notwithstanding the fact that several papers have tested the relationship 
between demand and innovation, very few studies investigated the relationship between 
demand and research intensity.  

The results reported in this paper confirm that demand exerts a positive and 
significant impact on innovation. Moreover, the results suggest that this impact is 
stronger in high-tech industries than in low-tech industries. This difference brings more 
evidence that different sectors have specific dynamics that need to be taken into account. 	

Finally, this paper provides evidence that demand does not impact on research 
intensity, despite its impact on innovation. This finding holds both for low-tech and 
high-tech industries, using both R&D to value added and patents per millions of hours 
worked as measures of research intensity. This result reinforces Romero and Britto’s 
(2017) findings, pointing out that research intensity is not influenced by demand growth, 
but most likely depends on each country’s capacity to develop a mature National 
Innovation System.	
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