A Post-Keynesian SFC model with Directed Technical Change

Asjad Naqvi

Engelbert Stockhammer

Vienna University of Economics and Business

Austria

University of Kingston

UK

Existing mainstream debate

- Original economic models with environmental constraints (IAMs, Nordhaus, Stern, Tol) assumed exogenous technical change
 - Emissions feedback on the real economy -> Damage function
 - Social cost of carbon is determined through prices
- Acemoglu (2008, 2012) include endogenous technological change
 - Hypothesis: Innovation is directed toward sectors with
 - Larger size (economies of scale)
 - Higher price (higher profits)
 - Investment can be directed to the right sector given the right incentives

Gaps in mainstream models

- Mainstream models are supply side driven with <u>minimal or no</u> <u>discussion of state intervention</u>
 - Purely price driven
 - Innovation and implementation is costless and immediately
- The role of finance is missing
 - No discussion on the limits of investment
 - Who invests?
- Focus remains on overall output efficiency
 - Inputs (L, K) can be perfectly substituted
 - Energy as an input is missing: Y=f(K,L,E)

Our contribution

- We introduce the government as key decision maker
- Banks are introduced and finance is fully tracked
 - Stock-flow consistent
- Three inputs y=f(L,K,E)
- Investment function

$$I_{t} = I_{0} + \gamma_{1}(K^{T} - K_{t-1}) - \gamma_{2} r_{l,t-1}$$

- Firms R&D investment
 - $R \& D_t = \mu I_t + R \& D_t^G$
 - Investment decisions across all inputs; labor (L), capital (K), and energy (E) based on price signals > A portfolio choice problem

Portfolio choice

- Labor: Growth of wage rate
- Capital: Increase in price of capital
- Energy: Growth of cost of energy

$$\begin{pmatrix} R \& D_t^L \\ R \& D_t^K \\ R \& D_t^R \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} \lambda_{10} \\ \lambda_{20} \\ \lambda_{30} \end{pmatrix} + \begin{pmatrix} \lambda_{11} & \lambda_{12} & \lambda_{13} \\ \lambda_{21} & \lambda_{22} & \lambda_{23} \\ \lambda_{31} & \lambda_{32} & \lambda_{33} \end{pmatrix} \begin{pmatrix} \omega_t - \widetilde{\omega}_{t-1} \\ r_{lt} - r_{l,t-1} \\ \psi_t - \widetilde{\psi}_{t-1} \end{pmatrix} \end{pmatrix} R \& D_t$$

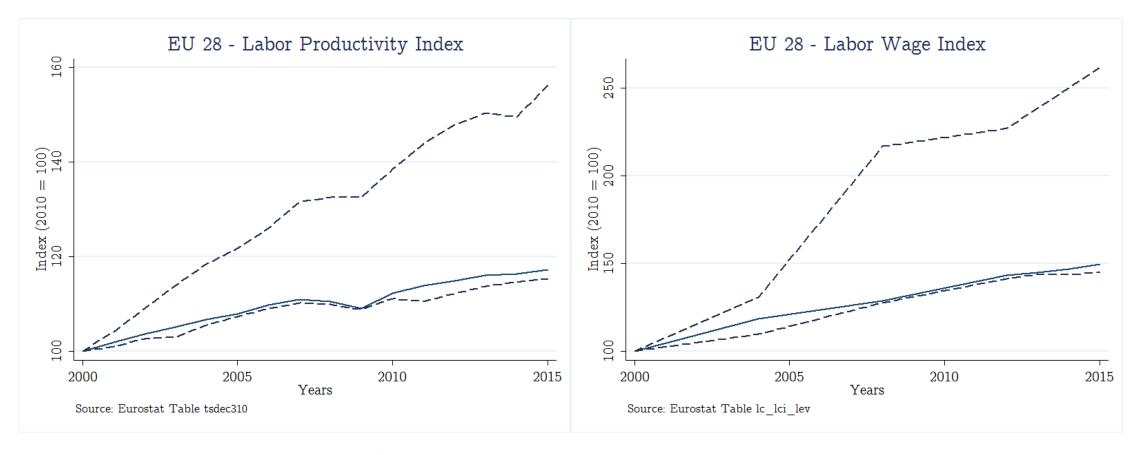
Innovation

 Investment results in a non-reversible innovation in the relative productivities of each input

$$\epsilon_t^i = \epsilon_{t-1}^i (1+\phi_t^i) \left(1+\frac{R\&D_t}{y_t}\right)$$
 for $i=L,K,E$

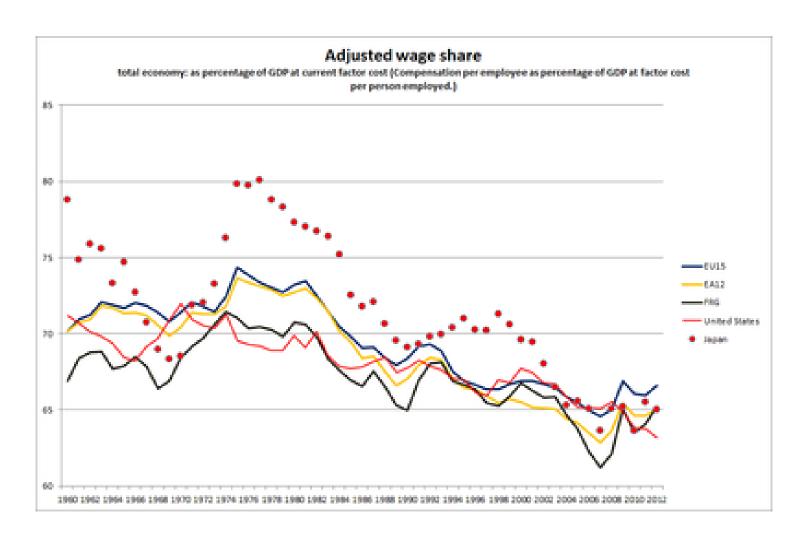
Where
$$\phi^i = \frac{R \& D_t^i}{R \& D_t}$$

- Feedback: higher productivity implies lower input requirement
 - Labor vs capital/energy


Balance sheet

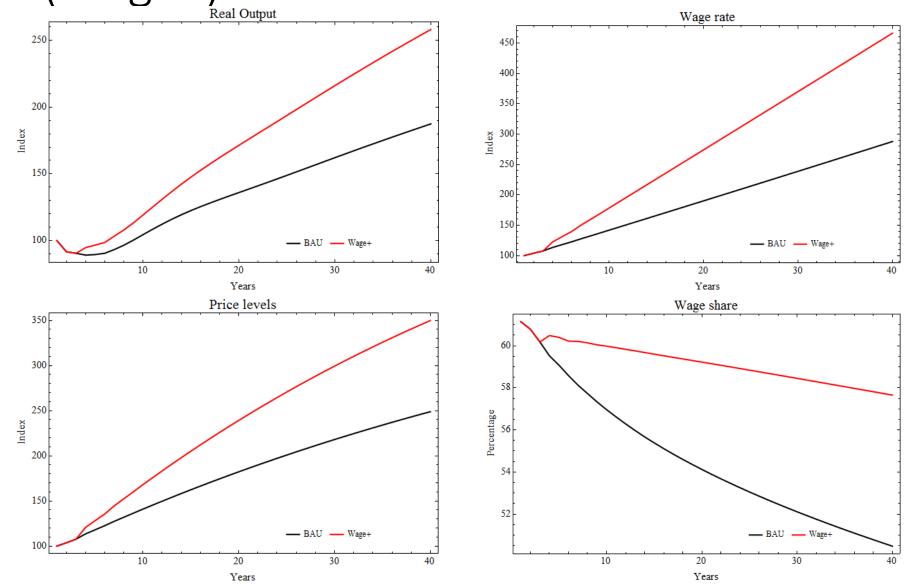
	Households	Firms	Banks	Government	Net Worth
Capital stock		+K			+K
Deposits	+D		-D		0
Loans		-L	+L		0
Bank Balance			+Bal	-Bal	0
Net Worth	+ <i>D</i>	0	0	-Bal	+NV

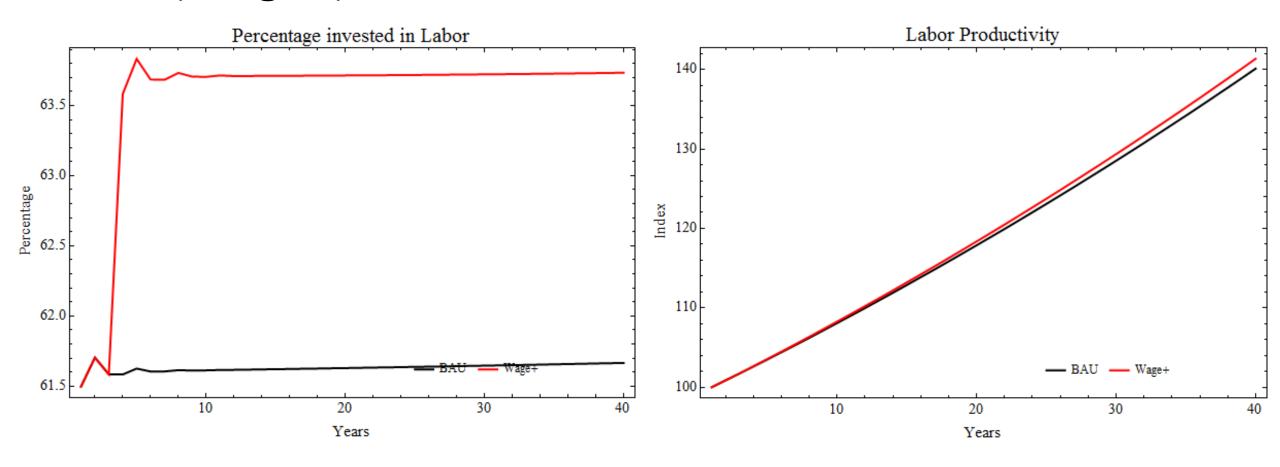
Transition matrix (FoF account)


	Households		Firms		Banks	Government	Total
		Current	Capital	R&D			
Consumption	- С	+Y				+G	0
				$\mu I + R \& D^G$			
Investment		-1	+1	$= \begin{cases} RD^L \\ RD^K \\ RD^R \end{cases}$		− <i>R</i> & <i>D</i> ^{<i>G</i>}	0
Wages	+WB	-WB					0
Resource tax		-R				+ <i>R</i>	0
Income taxes	$-T^H$	$-T^F$				+T	0
i Deposits	$+r_dD_{t-1}$				$-r_dD_{t-1}$		0
i Loans		$-r_lL_{t-1}$			$+r_lL_{t-1}$		0
i Bank Balance					$-r_bB_{t-1}$	$+r_bB_{t-1}$	0
∆ Deposits	$-\Delta D$				$+\Delta D$		0
Δ Loans			$+\Delta L$		$-\Delta L$		0
∆ Bank Balance					$+\Delta B$	$-\Delta B$	0
 Total	0	0	0		0	0	0

Stylized facts

Dark line = Median, Dotted lines = 25th-75th Percentile

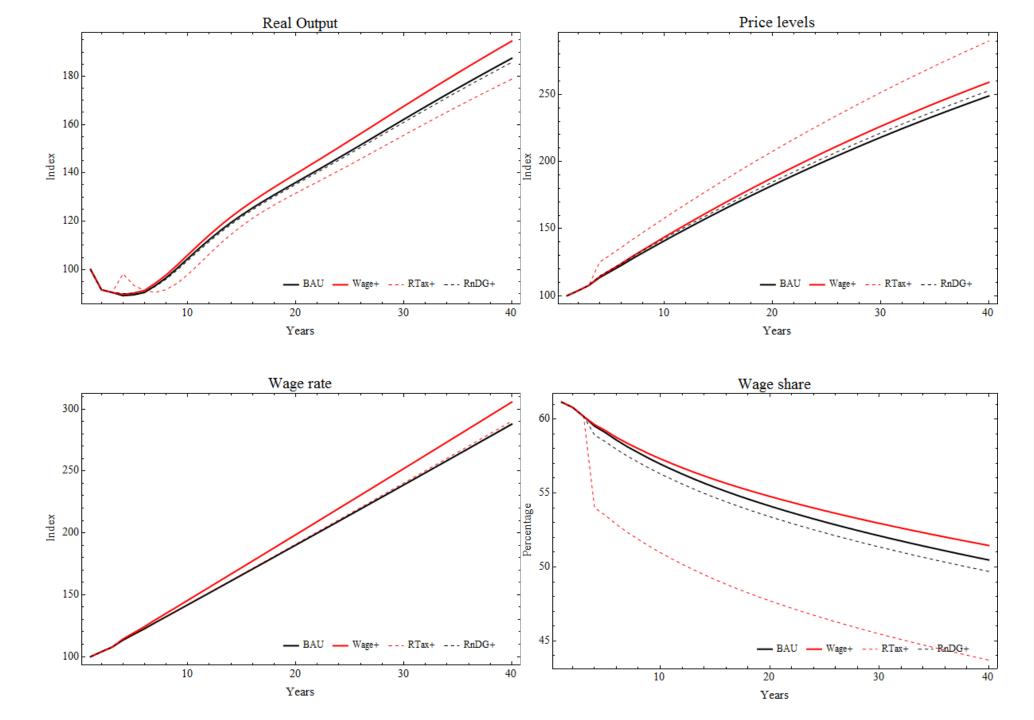

Wage share

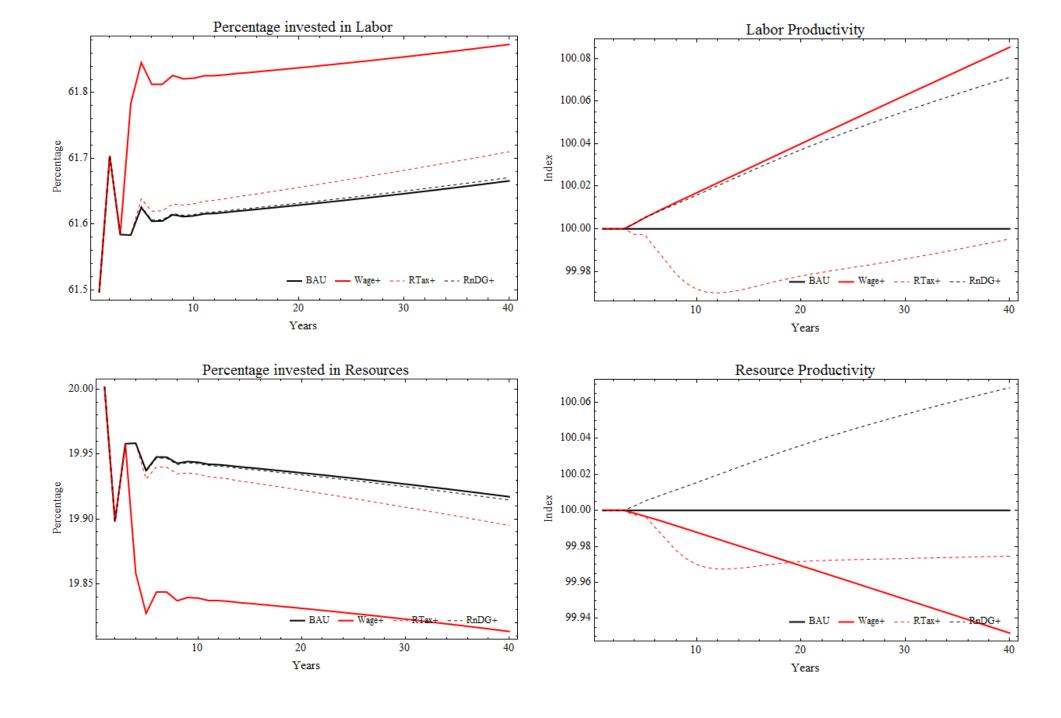

Experiment 1

Increase in Minimum wage rate

Experiment – Min wage rate increase (Wage+)

Experiment – Min wage rate increase (Wage+)




Experiment 2

Policy interventions

Policy Interventions

Description	Parameter		
One-off increase in wage rate	10% increase in W		
Increase in resource tax	10% increase in $ au^R$		
Increase in R&D expenditure	10% increase in $R\&D^G$		
	One-off increase in wage rate Increase in resource tax		

Summary

- Propose a post-Keynesian Ecological Economic model that has directed technological change and a full financial sector in an SFC framework
- Directed tech change: R&D react to price signals, productivity growth biased towards factors that are rising in prices
- Financial flows modelled SFC, the level of debt effects investment and R&D
- Model used to analyse different economic policy strategies
- Mainstream lit emphasises need to calculate static marginal social costs
- Instead we emphasize the need re-direct tech change by continuous intervention, i.e. a regime of annually increasing environmental taxes that mimic the continuous wage rises that have been feature of capitalist economies for a extended periods