Debt, Boom, Bust: A Theory of Minsky-Veblen Cycles

August 3, 2013

Jakob Kapeller
University of Linz
Department of Philosophy and
Theory of Science

Bernhard Schütz
University of Linz
Department of Economics

Background

Background

• Income inequality as a major factor leading to the crisis:

Barba/Pivetti (2009), Evans (2009), ILO/IMF (2010), Kumhof et al. (2012), Kumhof/Ranciere (2010), Rajan (2010), Stiglitz (2009), UN Commission of Experts (2009), van Treek (2012)

Importance of relative consumption concerns:

Boushey/Weller (2006), Bowles/Park (2005), Christen/Morgan (2005), Krueger/Perri (2006), Neumark/Postlewaite (1998), Pollin (1988, 1990), Schor (1998)

Crisis as a "Minsky moment":

McCulley (2009), The Economist (2009), The Financial Times (2007), The New Yorker (2008), The Wall Street Journal (2007), Whalen (2007)

Research question

- Can the recent crisis be interpreted as part of a larger cycle?
- Can we create such cycles in a simulation and if yes, what assumptions are necessary?

Basic model components

- Basic Framework: Stock-flow consistent modeling (Lavoie/Godley 2002, Godley/Lavoie 2007)
 - Keeps track of all stock developments
 - Ensures that all flows and money stocks within the model add up to zero in order to avoid model inconsistencies
- Closed economy Post Keynesian model with two classes (workers and capitalists), no fiscal activity by the state and a Minskyan banking sector
- 2 types of workers
 - Initially both groups are identical later on type 2 workers will lose income relative to type 1 workers.

Flow matrix

	Households			Firms		Banks		Σ
	Worker 1	Worker 2	Capitalists	Current	Capital	Current	Capital	
Consumption	$-C_{w1}^d(t)$	$-C_{w2}^d(t)$	$-C_c^d(t)$	$+C^s(t)$				0
Investment				$+I^s(t)$	$-I^d(t)$			0
[Production]				[Y(t)]				
Wages	$+w_{w1}(t)N_{w1}(t)$	$+w_{w2}(t)N_{w2}(t)$		$-w_{w1}(t)N_{w1}(t)$ $-w_{w2}(t)N_{w2}(t)$				0
Interest	$+rM_{w1}(t-1)$	$+rM_{w2}(t-1)$	$+rM_c(t-1)$	$+rM_f(t-1)$		-rM(t-1)		0
Repayment	$+\phi M_{w1}(t-1)$	$+\phi M_{w2}(t-1)$	$+\phi M_c(t-1)$	$+\phi M_f(t-1)$				0
	$-\phi M_{w1}(t-1)$	$-\phi M_{w2}(t-1)$	$-\phi M_c(t-1)$	$-\phi M_f(t-1)$				
Debt Cancelation	$-\chi M_{w1}(t-1)$	$-\chi M_{w2}(t-1)$	$-\chi M_c(t-1)$			$+\chi M_{w1}(t-1)$ $+\chi M_{w2}(t-1)$ $+\chi M_c(t-1)$		0
Profits			$+\pi_f\Pi_f(t) + \pi_b\Pi_b(t)$	$-\Pi_f(t)$	$+\left(1-\pi_f\right)\Pi_f(t)$	$-\Pi_b(t)$	$+ \left(1 - \pi_b\right) \Pi_b(t)$	0
Δ Deposits	$-\Delta M_{w1}(t)$	$-\Delta M_{w2}(t)$	$-\Delta M_c(t)$		$-\Delta M_f(t)$		$+\Delta M(t)$	0
Σ	0	0	0	0	0	0	0	

Consumer behavior – Modeling relative consumption concerns

Type 1 workers:

$$C_{w1}^{d}(t) = \frac{1}{1+\beta} a_0 + a_1 \left[YD_{w1}(t) - \frac{1}{1+\beta} a_0 \right]$$

$$\beta = N_{w2}/N_{w1}$$

a₀...aggregate subsistence level consumption working class

YD...disposable income

Type 2 workers: Similar to type 1 workers as long as disposable income is not less than those of type 1; afterwards it changes to:

$$C_{w2}^{d}(t) = \left(-\alpha \left[\frac{\beta}{1+\beta} a_0 + a_1 \left[YD_{w2}(t) - \frac{\beta}{1+\beta} a_0 \right] \right] + \alpha C_{w1}^{d}(t) \beta$$

 $\alpha... \text{relative consumption parameter}$

Investment, capital, employment and production

Investment:

$$I^{d}(t) = i_{0} + i_{1}z(t-1) + i_{2}RR(t-1)$$

z...capacity utilization [= Y/(vK)]

RR...rate of return $[= \Pi/K]$

Capital stock:

$$K(t) = K(t-1) + I^{s}(t-1) - \delta K(t-1)$$

 δ ...depreciation rate

Employment:

$$N_{W1}^{d}(t) = \frac{Y(t)}{PR} \frac{1}{1+\beta}$$
 $N_{W2}^{d}(t) = \frac{Y(t)}{PR} \frac{\beta}{1+\beta}$

PR...labor productivity

Aggregate output:

$$Y(t) = C^{d}(t) + I^{d}(t)$$

Banking sector

Workers i = 1, 2 are granted loans as long as

$$W_{wi}(t)N_{wi}^{d}(t) \ge - \left[(t) + \phi \right] M_{wi}(t-1) + \theta_{wi}(t)$$

 r_i ...real interest rate on loans

 ϕ ...installment rate

Margin of safety:

$$\theta(t) = \theta(t-1)(1+\mu) + \zeta \Delta L(t)$$

 $\mu = (-\gamma)$ if no bankruptcies occur in a given period, otherwise $\mu = \tau$ ($\tau >> \gamma$)

L...absolute value of negative deposits (=total debt)

Debt cancelation in case of bankruptcy:

$$\Delta M_{wi} = -\chi M_{wi} = cancel_{wi}$$

Interest rate:

$$r_L(t) = r_L(t-1) + \rho \Delta L(t)$$

Simulation scenarios

- Scenario 1: Baseline case
- Increasing inequality, unlimited credit supply:
 - Scenario 2: No relative consumption concerns
 - Scenario 3: Relative consumption concerns
- Increasing inequality, relative consumption concerns, limited credit supply:
 - Scenario 4a: Speculative dynamics
 - Scenario 4b: Ponzi dynamics
 - Scenario 4c: Hedge dynamics

Scenario 1: Baseline case

Assumptions:

Income distribution constant

Results:

- Production and aggregate income slightly increasing (interest income)
- No household debt

Scenario 2: Inequality and contraction

Assumptions:

- Income of type 2 workers decreases
- No relative consumption concerns

Results:

- Decrease in consumption
- Decrease in aggregate income
- No household debt

Scenario 3: Inequality and contraction

Assumptions:

- Income of type 2 workers decreases
- Relative consumption concerns
- Unlimited credit supply

Results:

- Initial expansion due to conspicuous consumption and increased debt
- Followed by a stagnation phase (workers reduce spending and roll over debt)
- Boom induced by capitalist consumption out of (debt-financed) interest payments

Scenario 4a: Speculative dynamics

Assumptions:

- Income of type 2 workers decreases
- Relative consumption concerns
- Limited credit supply
- Result: Minsky-Veblen Cycles #1
 - Expansion (speculative financing)
 - Followed by compression phase (type 2 workers reduce consumption)
 - Panic and bankruptcies
 - Consolidation

Discussion

Economies can display the following Minsky-Veblen Cycles:

Minsky-Veblen cycle from scenario 4a (periods 150-250)

- What it needs are:
 - Increasing income inequality
 - Relative consumption concerns
 - A financial sector as described by Minsky

Discussion: Output-Debt dynamics

In the beginning, we assumed the output-debt cycle to have the following rough properties,...

Debt

which are well in line with our simulation results

Discussion: Output-Debt dynamics

- Course of the cycle:
 - "Expansion": growth accommodated by rising debt levels
 - "Compression": decreasing or stagnating output with further rising debt levels
 - "Panic": rapidly falling output and banks writing off debt
 - "Consolidation": growth accommodated by decreasing debt levels

Output-debt dynamics (Scenario 4a, periods 100-220)

Scenario 4b: Ponzi dynamics

Assumptions:

- Income of type 2 workers decreases
- Relative consumption concerns
- Limited credit supply
- Less prudent banks (ζ decreases)
- Result: Minsky-Veblen Cycles #2
 - Households become Ponzi-financing units
 - Cycles display longer duration and larger amplitude

Scenario 4c: Hedge dynamics

Assumptions:

- Income of type 2 workers decreases
- Relative consumption concerns
- Limited credit supply
- Very prudent banks (ζ increases)
- Result: Minsky-Veblen Cycles #3
 - Households remain hedge-financing units
 - Cycles display short duration and small amplitude

Conclusions and future prospects

- Increasing income inequality, relative consumption concerns and a
 Minskyan financial sector can give rise to Minsky-Veblen Cycles
 - Cautiousness of banks as a central factor determining the length of the associated cycles.
- Our story stops with the financial crisis
- Including the subsequent sovereign debt crisis is outside of the scope
- However, negative bank balances displayed in our simulation indicate where this would lead, and how this may provide an even richer story of MVC:
 - Negative bank balances are reallocated to the governmental sector
 - Sovereign debt crisis, austerity programs, ...

Thank you for your attention!

Appendix

Figure 4.2: Simulation results for scenarios 1-3

Appendix

Figure 4.3: Simulation results for scenarios 4-6

