Keynesian Growth and Instability

Steven Fazzari, Piero Ferri, Edward Greenberg, and Anna Maria Variato (ROKE, 2013 + recent extensions)

FMM Summer School – July, 2013

Demand and Growth

- Intrinsic Keynesian model: demand generation process not automatic
- Long-term growth persistent, where does demand growth come from?
- Moments near full employment
- Mainstream growth models emphasize technology and resources: necessary but not sufficient

Rediscovering Harrod

- Baseline Keynesian growth model
 - Simple, one-sector model; linear saving and production
 - Investment targets expected capital-output ratio (utilization)
- Results:
 - Warranted rate steady-state growth rate:
 - If it's expected, it actually prevails
 - But steady state <u>unstable</u>: knife edge
 - Unattractive as empirical prediction: economies don't seem to explode or implode
- Conclusion: basic Keynesian demand dynamics unstable, but that can't be the whole story
 - Need alternative structures to explain realistic growth paths

Vision of New Work

- Can Harrod's instability result explain persistent growth?
- Upward instability drives demand growth until resource constraints bind
 - Systematic demand growth not an "equilibrium" or "steady state" result
 - Moments of full employment
 - Link to Marc Lavoie point: full employment as a "fluke"
- Also need to contain downside instability
 - Hicks & Minsky: floors and ceilings

A Twist on Harrod's Theme

- Instead of "disappointment," instability is our friend
 - Source of persistent demand growth
 - Allows economy to exploit expanding production possibilities, at some points in time
- If resource constraints bind; follow "potential" path
- But potential path is <u>not stable</u>
 - Negative shocks send system to "floor" again, until unstable positive growth restored

Basic Model

- Demand drives output
 Y_t = min (AD_t, Y*_t); AD_t = C_t + I_t
- Linear consumption: $C_t = (1-s) EY_t = (1-s)(1+Eg_t)Y_{t-1}$
- Investment targets adjustment to desired capital

$$K_{t+1}^* = v^* EY_{t+1} = v^*(1 + Eg_t)^2 Y_{t-1}$$

 $I_t = v^*(1 + Eg_t)^2 Y_{t-1} - (1-\delta)K_t$

Basic Growth Dynamics

• Law of motion for growth rate, conditional on expectations and lagged utilization of capital

 $1+g_t = v^*(1 + Eg_t)^2 - (1-\delta)(K_t / Y_{t-1}) + (1-s)(1+Eg_t)$

- Note typical Keynesian features: rising demand components stimulate growth
- Warranted rate:

Set $g_t = Eg_t = g^*$; set $v_t = v^* = g^* = (s / v^*) - \delta$

Basics of Instability

• At **Eg**_t = g*:

(1) dg_t / d(Eg_t) = 1+s+ $2v^{*}(1 - \delta) > 1$

- Any deviation of Eg_t from g* is magnified for any value of basic parameters
- Behavioral restriction:
 (2) g_t < Eg_t => Eg_{t+1} < Eg_t (and reverse)
- Learning: instability reinforces expectation rule; moves expectation in direction of most recent error.
 - Behavioral expectations: contrast with RE
- Conditions (1) and (2) => instability; does not depend on parameter values

A Harrod Collapse

Containing Downside Instability

- Autonomous source of demand $F_t = F_0 (1 + g^A)^t$
- Stabilizes demand on downside. Key variable F_t / Y_{t-1} in law of motion
 - **F**_t / **Y**_{t-1} gets "large" as growth of **Y**_t falls below **g**^A
- Find Y' at minimum of cycle
 - Set **Eg** to zero and **v=v***: standard Keynesian multiplier
 - Y' = F / [s δv*]
 - Denominator: propensity to save less "accelerator"

The "Floor" (f* = 0.01; tiny)

Interpreting the "Floor"

- Find Y' at minimum of cycle
- Set Eg to zero and v=v*: get standard Keynesian multiplier result
 - $Y_t' = F_t / [s \delta v^*]$ (time dependent path)
 - Denominator: propensity to save less "accelerator"

Labor Constraints and the Ceiling

- Effective labor supply (productivity adjusted) grows exogenously at rate g* (simplest case); generates potential output Y*
- If **AD**_t > **Y***, **Y**_t = **Y***
- Demand drives growth until system hits resource constraints

More Realistic Application

- Autonomous demand share 35%; limits downside volatility
- Capital-output ratio of 1.0 (2009 about 1.2)
- Random, uncorrelated shocks with standard deviation of 0.5%
- Growth path contained in corridor

One Realization (Random Shocks, f share 35%)

What is Important Here?

- No price adjustment / monetary policy mechanism to close "demand gap"
- Demand growth is the result of positive instability <u>plus</u> floor imposed by autonomous demand
- Simulations occasionally touch supply-constrained steady state, but Y* path <u>is typically unstable</u>
- Demand is proximate constraint on output most of the time

Variation in Growth of F

- No need for F to grow at same rate as potential Y
- Below growth of supply => corridor widens
- Faster than supply => corridor goes to zero
 - Seems unrealistic: fluctuations do not seem to disappear
 - Autonomous spending rises faster than potential output

Possible Stable Steady-State with F

- Presence of F always bounds demand/output path away from zero; creates "floor"
- May create <u>endogenous</u> ceiling on demand
- In this case, growth path driven by autonomous demand + basic multiplier
- Explanation for stagnation in "growth phase" of cycle
 - In unstable model, positive growth accelerates until resource constraints bind
- Empirical relevance of two regimes; what leads to switch?
- Important implications for fiscal policy (current project)
 - Need F to grow at rate that maintains full employment
 - Austerity affects levels <u>and</u> growth rate

Effect of Large "F"

Constrains demand path away from potential output

Extensions

- Price and interest rate adjustment
 - Prices probably not too interesting
 - Interest rates and saving / investment; monetary policy
- Endogenous productivity: from demand to supply
- Finance: Minsky fragility as "ceiling" (2007??), financial cleansing as floor
- Income distribution, consumption, household debt in fully dynamic context
 - Explore formal dynamics of the "Consumer Age"

Conclusion: Trivial, Intriguing, Profound?

- Trivial: neoclassical synthesis in new clothes? But ...
 - Fundamentally different adjustment mechanism
 - Full employment inherently unstable
 - Institutional links to downside containment
 - Possibility that demand never reaches potential path
- Intriguing: a truly different perspective. But ...
 - Upward instability of demand a robust empirical feature of modern capitalism?
 - Empirical role of autonomous demand in containment?
- Profound: A simple idea, but one that could change the way we think about growth.

Kaleckian Growth Model

- Autonomous investment function drives growth in K
 - Capacity utilization /animal spirits / distribution
 - Demand and growth
- Issues
 - Target capacity utilization as equilibrium result vs. behavioral concept
 - How to explain "moments" of near full employment?
- Useful, but explore different conception