The Keynesian Multiplier, Credit-Money and Time*

Sebastian Gechert†‡

October 19, 2011

Abstract. We analyze whether the standard serial multiplier is consistent with an endogenous credit-money framework and whether it is applicable to time series data. In order to integrate these terms, we draw on the velocity multiplier approach and a reformulation of the sources and uses of funds in the standard multiplier process. We argue that both the standard multiplier and the velocity multiplier are incomplete; however, they can benefit from each other. Their useful properties are integrated to a new version of the multiplier drawing on the income propagation period and a distinction between saving in terms of debt settlement and saving in terms of accumulating receivables. While the comparative-static stability condition can be dropped, our integrated multiplier reveals a dynamic stability condition for the multiplier process.

Keywords. Keynesian multiplier; endogenous money; velocity of money; credit cycles

JEL classification. B22, E12, E51, E62

1 Introduction

The discussion of fiscal multipliers has lasted for decades and still economists struggle on the value of the multiplier. Stimulus packages facing the great reces-

*Preliminary draft—not to be cited without author’s permission.
†Chenmrz University of Technology, Department of Economics & BA, Germany. gechert@wirtschaft.tu-chemnitz.de
‡I would like to thank the participants of the KIEnet conference in Roskilde 2011, those of the 6th Meeting of the Keynes Society in Izmir 2011, and those of the 14th FMM conference in Berlin 2010 for their helpful comments. Of course, they bear no responsibility for any mistakes.
sion have brought the matter back on the agenda. The literature on multiplier evaluations is growing fast, while at the same time the range of results is increasing. Several effects have been discussed that eventually turn the balance of the multiplier below or above unity. Roughly summing up, the discussion is about crowding in vs. crowding out effects of the consumption function and crowding in vs. crowding out effects of the investment function.

One reason for the large range of results is simply the method of measuring the multiplier. Spilimbergo et al. (2009: 2) report several definitions of the multiplier in empirical studies and complain about the lack of comparability. For the single case of DSGE models the multiplier effect is measured either as peak response, initial response, or cumulative response to a permanent or transitory impulse. Additionally, there is no standardized time period, within which the effects are measured.

Without going too much into detail, it turns out that more emphasize should be given to the time dimension of the multiplier process. If empirical evidence should serve as proof or disproof of the multiplier principle, empiricism and theory should run on comparable methodical grounds.

Besides standardizing measurement this makes the case for transferring the multiplier principle from logical to historical time. For it is of no practical use to calculate the value of the multiplier after an indefinite number of hypothetical rounds. It is far more useful to have a prognostic tool at hand to evaluate the effects of fiscal policy for a concrete time span, and thus make the multiplier principle and the empirical investigations consistent.

A second issue concerns the relation between the multiplier and endogenous money. While both principles are widely accepted within the Keynesian literature, the multiplier does not fully account for the nature of a credit-money economy and should therefore be upgraded.

The aim of this paper is to tackle both these issues and to show that they are interrelated. The issue of time may be introduced to the multiplier principle by drawing on the so-called velocity approach. The issue of credit-money may be introduced to the standard multiplier approach by detailing the leak-ins and leak-outs of the multiplier process. The paper argues that both attempts are incomplete on their own, but can benefit from each other. They are integrated to a more general multiplier formula that contains the standard multiplier and the velocity multiplier as special cases. This integrated multiplier is consistent with a credit-money framework and applicable to historical time.

The paper is organized as follows. The next section reviews the standard multiplier approach and provides a more detailed explanation of the issues mentioned above. The third section reviews the velocity multiplier as a way to introduce time. Section four combines these findings to an integrated multiplier. In section five we deal with the dynamic stability conditions of the multiplier in a credit-money
economy. The final section concludes.

A short note on assumptions should be given beforehand: (1) Throughout this paper we consider a closed economy with underemployed resources. (2) Commodity and service prices are mainly determined by unit costs outside the model; consumer price inflation is not a result of an increasing money stock. Thus, we do not distinguish between nominal and real terms. (3) There are no central bank reactions. (4) Changes in distribution of income or assets are not considered.

2 The serial multiplier

2.1 Explanation of the multiplier process

The usual multiplier formula can be derived from the following identities:

\[Y = C + I \]
\[Y = C + S \]
\[S = sY \]

Substituting (3) into (2) yields

\[C = (1 - s)Y. \] (4)

Substituting (4) into (1) yields

\[Y = \frac{1}{s}I \] (5)
\[\Delta Y = \frac{1}{s} \Delta I \] (6)

Considering \(\Delta I \) to be exogenously determined and \(s \) to be a stable behavioral parameter makes (6) a behavioral equation

\[\Delta Y = \frac{1}{s} \Delta I \] (7)

where \(1/s \) is the investment multiplier.

The multiplier principle has been viewed by most authors as a way to predict the impact of an exogenous expenditure on overall income or employment.\(^1\) It is this major interpretation of the multiplier—the serial multiplier—that empirical investigations of stimulus packages draw upon; and it is this interpretation that

\(^1\)Besides, there is the idea of the multiplier as a logical relation (Gnos 2008) or as a sectoral equilibrium condition (Hartwig 2004, 2008). Cf. Chick (1983: 253-4) for a more detailed discussion of the methodical difference.
we will deal with here. In order to account for the nature of stimulus packages, we will focus on one-shot stimuli.

The serial multiplier, which Keynes owes to Kahn (1931), resembles a real process of spending and receipts through time, by drawing on comparative-static logical-time analysis. It describes a sequence of events: an initial increase in investment in the first round generates additional income which is partly spent for consumption and partly saved in the second round; what has been spent, induces additional income that, again, is spent and saved in a certain proportion in round number three, and so on. Given that $0 < s < 1$, this ‘converging series of ever diminishing waves of expenditures’ (Meade 1975: 84) yields the same formula as above, yet, this time as the outcome of an equilibrating process in logical time:

$$\Delta Y = (1 + c + c^2 + c^3 + \ldots)\Delta I = \frac{1}{s}\Delta I \quad \text{with} \quad 0 < (c, s) < 1$$

The process stops as soon as additional planned saving equals additional investment again. It is the increasing income that adjusts saving step by step to investment. In other words, the lower the propensity to save s, the more income is generated before saving is equal to investment again.

At a first glance, the multiplier process looks like an inescapable mechanism. There has, however, been a long discussion why individual voluntary decisions of savers and investors generate that outcome.² The prevalent answer states that the generated saving is necessary to finance investment, which can also be found in the General Theory:

‘An increment of investment in terms of wage-units cannot occur unless the public are prepared to increase their savings in terms of wage-units. Ordinarily speaking, the public will not do this unless their aggregate income in terms of wage-units is increasing. Thus their effort to consume a part of their increased incomes will stimulate output until the new level [...] of incomes provides a margin of saving sufficient to correspond to the increased investment. The multiplier tells us by how much their employment has to be increased to yield an increase in real income sufficient to induce them to do the necessary extra saving ...’

(Keynes 1936: 117) (emphases added; S.G.)

Following this rationale, voluntary savings must fund the initial investment which forces them to become equal. According to Shackle (1951: 243), Keynes owes this to Kahn:

²Cf. for example Dalziel (1996); Moore (1994); Cottrell (1994); Chick (1983); Warming (1932) and more recently Gechert (2011); Bailly (2008); Rochon (2008)
‘For it will be demonstrated [...] that, pari passu with the building of roads, funds are released from various sources at precisely the rate that is required to pay the cost of the roads.’ Kahn (1931: 174) (emphases added; S.G.)

These explanations are—curiously enough—a recurrence to Say’s Law: the multiplier is considered to explain how investment is made possible by savings while the core of the General Theory was meant to explain that investment governs savings.³

Keynes himself overcame this contradiction in his post-General Theory writings (Keynes 1937a: 246-7), (Keynes 1937b: 664-6). These articles laid the foundation for the now widely accepted endogenous money approach which states that finance requires no saving. Financial resources for investment are provided by private banks creating credit ex nihilo. When a loan is granted, the borrower holds a debt and a deposit and nobody has saved beforehand. Once the borrower spends the money on newly produced capital goods, the producer receives deposits that can be considered transitory saving. If they are spent later on, someone else earns and transitonally saves them. The overall amount of financial assets is zero at any time because there is still a liability to the bank. Only the investment has created wealth. Thus, finance creates saving via investment and not the other way round. Accepting the endogenous money approach means rejecting the notion that saving finances investment. If investment needs finance but finance does not require saving, there is no market constraint for voluntary saving to be on par with investment. It provides no economic explanation for the outcome of the multiplier process.⁴

However, there is a more pragmatic answer to the question why saving should adjust to investment. Kahn and Keynes simply modeled the process this way to arrive at a finit multiplier value in a comparative-static framework (Hegeland 1966: 61).⁵ From that point of view, savings are a mere residual, a leakage allowing the process to find a position of rest after the initial demand shock. However, to yield that outcome, the serial multiplier process depends on two critical assumptions, namely, (1) Keynes’ division of the multiplier and the multiplicand, and (2) his simple consumption function. He considered consumption and investment to be of a completely different nature:

‘The theory can be summed up by saying that, given the psychology

³Cf. Trigg (2003) for a further discussion.
⁴There is only the ever-valid ex post identity of actual saving and investment. Cf. Gechert (2011) for a more detailed discussion.
⁵Hegeland also considers a second effect. The notion that a governmental expenditure would eventually create adequate savings may have been convincing to politicians of the non-inflationary effects of expansionary fiscal policy.
of the public, the level of output and employment as a whole depends on the amount of investment. I put it in this way, not because this is the only factor on which aggregate output depends, but because it is usual in a complex system to regard as the *causa causans* that factor which is most prone to sudden and wide fluctuation. More comprehensively, aggregate output depends on the propensity to hoard, on the policy of the monetary authority as it affects the quantity of money, on the state of confidence concerning the prospective yield of capital-assets, on the propensity to spend and on the social factors which influence the level of the money-wage. But of these several factors it is those which determine the rate of investment which are most unreliable, since it is they which are influenced by our views of the future about which we know so little.’ (Keynes 1937c: 221)

Keynes divides the multiplier (1/s) and the multiplicand (∆I) in order to separate the more stable from the more fluctuating expenditures. As the citation above shows, he also regards this as the right way to separate cause and effect. Investment demand is very volatile and thus the ultimate *cause* of economic fluctuations. In contrast, consumption is a mere *effect*, and is determined by the simple Keynesian consumption function as a stable share of disposable income. Consequently, the leakage in each round of the process is given by *current income not consumed*.

2.2 Criticism of the multiplier process

The method may be brilliant from an analytical point of view, but it may not suffice to separate cause and effect. Putting volatility on a level with causality has been questioned by Villard (1941: 229-33), Lutz (1955: 40-2), and Machlup (1965: 10), among others. Additionally, the Keynesian consumption function has come under criticism from various strands (Modigliani and Brumberg 1954), (Godley and Lavoie 2007: 70), (D’Orlando and Sanfilippo 2010: 1044). Taken together, it is questionable whether the causality intended by the multiplier principle is more than an *ad hoc* assumption and valid in a credit-money economy. The following points may specify the concerns:

1. It is illogical that consumption triggers further expenditures in any round of the multiplier process but the first round. According to the multiplier formula, consumption can only continue the process, yet not initiate it. This assumption may be justified from a financing point of view: assuming that any initial spending requires new credit (Wray 2011: 8), deficit spending is more common for investment and public expenditures than for consumption. However, debt financed consumption has become increasingly important over the last decades (Dutt 2006: 341-3), (Brown 2008: 20), (Cynamon and Fazzari 2008: 8), (Akerlof 2008: 1) and
should not be ruled out. We therefore implement initial consumption spending by referring to additional autonomous expenditures (ΔA) starting the process; ΔA contains initial investment, consumption and governmental expenditures.

(2) Related to the first point, it is worthwhile to adopt the so-called credit view on the multiplier: any autonomous expenditure comes with new credit creation. The credit view is based on the financing process of investment as described by Davidson (1986: 102) and Chick (1983: 262-3). Initial investment is financed by new loans or drawing on overdraft facilities provided by the banking system. Internal finance (retained earnings, depreciation) plays a subordinate role for financing net-investment. We may easily extend this assumption to additional autonomous expenditures ΔA in general. Under these conditions, the multiplier process starts with credit expansion:

> ‘Without a rise in overall debt, private or public, the growth process would essentially come to a halt in a monetary economy. Indeed, whether it is business enterprises, households, or governments, in a dynamic growth process someone must first borrow in excess of any “pre-existing” amount of financial resources.’ Seccareccia (2011: 12-3)

By aggregate demand, the additional credit-money flows from hand to hand, accompanying the creation of income through the multiplier. This is not to say that money is causal for aggregate demand; but it sheds new light on the multiplier process, as will be argued in more detail in section 4.

(3) Again, related to the first point, it is illogical to regard consumption as the only induced expenditure. Clearly, excluding induced investment controls for a finit multiplier value in a comparative static framework, but this is a mere method-based reason. As regards content, Keynes may have left induced investment out because he argued in a situation far from full capacity utilization where there is no incentive for the private sector to increase capacity; the marginal propensity to invest may be close to zero under these conditions. However, given that initial spending is for consumption purposes—be it public or private—it increases capacity utilization, and therefore may induce investment. Moreover, the majority of the empirical literature applies the multiplier principle regardless of the phase of the business cycle. Thus, their estimations comprise phases of high capacity utilization, too. As many empirical studies find crowding-in of private investment, the theoretical model should not exclude these effects a priori. Of course, there are multiplier-accelerator models that employ an investment function as well. See Hicks (1959) for an early model. However, the present paper combines the marginal propensity to consume and the marginal propensity to invest which yields the marginal propensity to spend (ε). So far, the modified multiplier formula

6Cf. (Polak 2001: 7) for another application of the credit view.
\[\Delta Y = \frac{1}{1 - \varepsilon} \Delta A. \]

Assuming that induced expenditures solely stem from income generated in the previous round, controls for \(\varepsilon \leq 1 \), whereby the series is most likely to converge.

(4) However, in a credit-money economy expenditures are not limited by current income. The factual budget constraint of households is based on cash flows (Brown 2008: 3), and thus includes wealth (Godley and Lavoie 2007: 66), (Zezza 2008: 376), and credit (van Treeck 2009: 475-6), (Zezza 2008: 379), (Bhaduri 2011: 10) as additional sources to spend from. Consequently, the stability condition of the multiplier \((0 < \varepsilon < 1)\) may not hold.

(5) Besides the sources, it is also necessary to specify the uses of funds. In the simple multiplier model there is only the distinction between consumption and saving. With point (3) we add investment, whereby saving becomes the residual that is not spent. From a demand perspective, saving is considered a definite flow out of the circuit and does not re-enter (Palley 1998: 96); from a monetary perspective saving is net wealth accumulation, either by accumulating receivables or by reducing liabilities.

We may draw on an example here. Consider a closed economy consisting of a bank \((B)\), a producer of consumption goods \((P_C)\) and a producer of investment goods \((P_I)\), the latter being also the consumer. \(P_C\) takes out a loan \(\Delta L\) in order to buy a newly produced investment good from \(P_I\). First of all, taking out the loan increases both liabilities and receivables of \(P_C\). After production, delivery and payment of the investment good, \(P_C\) holds a tangible asset \(\Delta I\) and the liability to the bank, while \(P_I\) holds the receivable to the bank.

Let us consider the simple case where \(P_I\) has a marginal propensity to save \(s_I = 1\). Then, the equilibrium condition \(S = I\) comes true right after the first round, while liabilities and receivables still exist. If this is a repeated scenario (permanent flow of additional credit financed investment), there will be a converging flow of additional income while the stock of liabilities and receivables grows infinitely. If this is a one-shot scenario, additional income will fall back to zero while the stock of liabilities and receivables persists. In both cases, the ratio of liabilities to income (and as a mirror image the ratio of receivables to income) would raise to infinity. Thus, the comparative-static equilibrium of the simple multiplier model may be stock-flow incoherent (Godley and Lavoie 2007: 70-1).

Let us consider the other case where \(P_I\) has a marginal propensity to save \(s_I = 0\) and buys consumption goods from \(P_C\). Right after production, delivery and payment of the consumption goods, \(P_C\) holds the liabilities and the receivables again. If \(P_C\) fully uses the receivables to settle his debt to the bank, i.e. \(s_C = 1\), then after the second round \(S = I\) holds. Both in a repeated and in a one-shot
scenario the ratio of liabilities (and receivables) to income converges, i.e. there is stock-flow coherence. However, this is the only stock-flow coherent example. Any scenario with positive saving of net creditors (such as P_I in our case) yields stock-flow incoherence. The kind of saving is important for the dynamic stability of the system, but it does not appear in the stability condition of the multiplier. Below we will distinguish between saving as a reduction of liabilities and saving as an accumulation of receivables.

All these caveats are clearly interconnected. They augment the possible sources and uses of funds at the beginning and during the multiplier process. The standard multiplier allows for credit financed expenditures in the initial round only, while in any further round current income is the only available source. Consumption and unspecified saving are the only uses then. In contrast, in a credit-money economy the following budget constraint holds in any round of the multiplier process:

$$\Delta Y_{r-1} + \Delta D_r + \Delta L_r \equiv \Delta C_r + \Delta I_r + \Delta H_r + \Delta R_r$$

(10)

ΔY_{r-1} is the additional disposable income (generated in the previous round), ΔD_r is additional funding out of wealth (reduction of receivables), ΔL_r is additional credit (accumulation of liabilities), ΔC_r is additional consumption, ΔI_r is additional investment, ΔH_r is additional debt settlement (reduction of liabilities), and ΔR_r is additional accumulation of wealth (accumulation of receivables) in round r.\(^7\) The marginal propensity to spend ε_r is defined as

$$\varepsilon_r \equiv \frac{\Delta C_r + \Delta I_r}{\Delta Y_{r-1}} = \frac{\Delta Y_r}{\Delta Y_{r-1}}$$

(11)

From (10) and (11) follows

$$1 - \varepsilon_r \equiv \frac{\Delta H_r - \Delta D_r + \Delta R_r - \Delta L_r}{\Delta Y_{r-1}} \equiv \lambda_r$$

(12)

where λ_r depicts the net outflow from the circuit by net debt settlement ($\Delta R_r - \Delta L_r$) and net hoarding ($\Delta H_r - \Delta D_r$). It is now obvious that $\varepsilon_r > 1$ can occur whenever the numerator in (12) becomes negative. That means, more funds are floated into the circuit than withdrawn from the circuit ($\lambda_r < 0$), which corresponds to a negative propensity to save for the standard multiplier. However, this infringes the stability condition of the comparative-static model (now: $0 < \lambda_r < 1$); the multiplier wouldn’t converge to a finite value. The usual solution is to restrict the analysis to stable cases. In the present paper we develop a method to determine the multiplier without such a restriction.

This requires some further considerations that are closely related to our second issue of transferring the multiplier from logical to historical time. When applying

\(^7\)Note: Δ depicts differences to the preceding round.
the multiplier principle to empirical data, one has to switch from rounds to periods. As the multiplier is a dimensionless term, the length of a round and the length of the whole adjustment process are undefined \textit{a priori}; they have to be set from outside the model. This is usually done by either setting one round as one period, as in Dalziel (1996), or by assigning the whole adjustment process to one period, as in Godley and Lavoie (2007); Pusch and Rannenberg (2011). In order to refrain from an arbitrary choice, the multiplier model will be augmented by a time-component indicating the length of one multiplier period. The so-called velocity multiplier will serve as a starting point.

3 The velocity multiplier

In section 2 we emphasized the need for a time-dependent multiplier due to an arbitrary conversion from rounds to periods when applying the standard multiplier to time series data. The duration of the multiplier process was intensively debated in the aftermath of Kahn (1931). The discussion led to the development of the so-called velocity multiplier, where the marginal propensity to consume is replaced by the velocity of money.\footnote{Among the early proponents of the velocity approach were Lutz (1955); Machlup (1939); Anderson (1945); Clark (1935); Angell (1941). Early opponents were Samuelson (1942); Turvey (1948); Goodwin (2005); Ackley (1951); Hegeland (1966)} A recent contribution to this approach was made by Moore (2008), who derives his multiplier formula as follows: the whole volume of trading T_t in a certain period of time equals the amount of money that flows from hand to hand. This amount is decomposed by the stock of money M_t^* and its transactions velocity V_t^*. Then the truism holds that

$$T_t \equiv M_t^* V_t^* \tag{13}$$

which resembles the Quantity Equation for the whole volume of trading. By focussing on the amount of money that is used to buy currently produced commodities and services, the standard Quantity Equation comes into being:

$$Y_t \equiv M_t V_t \tag{14}$$

A change in aggregate demand (ΔY_t) comes along with changes in the stock and/or in the velocity of money. Totally differentiating (14) yields

$$\Delta Y_t \equiv \Delta M_t V_t + \Delta V_t M_t + \Delta M_t \Delta V_t \tag{15}$$

which is the additional income compared to the baseline.\footnote{Note: In this historical time approach Δ in general indicates deviations from the baseline scenario (without additional demand); it does not indicate differences to the previous period.} To determine ΔY_t, Moore (2008: 125) assumes the following. (1) The change of velocity of money

$$\Delta V_t \equiv V_t \Delta M_t + \Delta V_t M_t$$
is expected to be zero \((\Delta V_t = 0)\). (2) New investment is totally financed by bank lending and nothing else but investment expenditure demands new money \((\Delta I_t = \Delta M_t)\).

Assumption (2) is not homogeneous in dimensions, which Moore does not mention. \(\Delta I_t\) measures a change in a flow during a period; \(\Delta M_t\) measures a change in a stock comparing the beginning and the end of one period. To bypass that problem, the change in the flow may be related to the very beginning of the period under consideration, whereby the changed flow takes effect during the whole period. As long as there are no other changes in flows and stocks (and this is the case here), the change in the flow can be treated as if it were a change in a stock.\(^{10}\) This way, (15) becomes

\[
\Delta Y_t = V_t \Delta I_t
\]

where the income velocity of money for a certain period resembles the Keynesian multiplier. ‘In each period the Keynesian multiplier is the income velocity of money!’ (Moore 2008: 126).

The idea breaks away from Keynes’ original reasoning whereby the amount of investment is the *causa causans* of aggregate demand just because it is its most volatile component. For Moore, volatility is not the decisive factor; rather it is the kind of funding that makes the difference between \(I\) and \(C\). While consumption is usually paid out of current or past income, net investment is financed by newly created bank loans or by drawing on overdraft facilities. Thus, investment drives aggregate demand precisely because someone is ready to go into debt. It is the additional creditworthy demand that creates credit-money and thus initiates the multiplier effect; and it is the velocity of the additional credit-money that accounts for the value of the multiplier.\(^{11}\)

An additional amount of money—created by someone who is willing to borrow and by a bank that is willing to lend—induces a succession of expenditures and receipts, just like the process of the serial multiplier suggests. The crucial difference is: nothing leaks out of the circuit in Moore’s version. Thus, there is no resting point the system is gravitating towards. Instead of that, the process happens in real time, which allows to measure the laps of the amount of money in the circuit. Whenever someone receives an inflow, it will be spent on newly produced goods

\(^{10}\)Cf. Andresen (2006: 243), who applies this step-function method to a model in continuous time.

\(^{11}\)Rochon (2008: 168) notes that Moore’s recourse to the Quantity Equation has been criticized by some authors as ‘smacking of monetarism’. However, Moore does nothing more than referring to the Quantity Equation, which is by itself a mere identity. *Neither does he refer to Quantity Theory, which tries to explain inflation with monetary growth, nor to Neo-Quantity Theory, where \(M\) is determined by the central bank. To him, \(M\) is fully determined by creditworthy demand. Still, aggregate demand drives growth of income.*
sooner or later. The sooner this is done, the higher is the income velocity of money, and thus, the multiplier.\footnote{Cf. the dynamic model of Andresen (2006) for an application of the velocity multiplier.}

The question: “How large is the multiplier in a certain period of time?” boils down to: “How often will the additional money be spent on newly produced goods during that certain period?” The velocity multiplier has an infinite value for an infinite period, but a definite value for a definite period of, say, 4 per year or 1 per quarter. The serial multiplier is the antipode: it yields a finite value for an infinite succession of rounds while it does not tell how long one round actually takes.

This is a considerable advantage of the velocity multiplier. As the income velocity of money has a concrete time dimension, it is applicable to time series data without arbitrarily converting rounds into periods. The velocity approach makes an attempt to determine the income propagation period (Machlup 1939: 5). There is a second advantage: Even without the usual stability condition of the serial multiplier ($0 < s < 1$), a concrete multiplier value is calculable.

On the other hand, Moore’s multiplier has at least three distinct weaknesses.

(1) The measurement of the income velocity. Figures of the income velocity are usually taken 	extit{ex post} by dividing a certain money aggregate by income ($V_t = M_t/Y_t$). In this sense, V_t is a mere residual to fulfill the Quantity Equation. Depending on the money aggregate under consideration, V_t is higher or lower when M_t is defined narrower or broader. However, here the velocity is regarded as a behavioral parameter, so it must draw on structural characteristics of the economy that determine the length of the income propagation period and a clear definition of the money aggregate. We will reconsider that problem later.

(2) The exclusion of credit financed consumption. As with the serial multiplier, the impulse of the velocity multiplier should not be limited to (public and private) investment, but include (public and private) credit financed consumption as well. We will implement that idea in the next section by generally referring to the credit view and looking at the credit impulse, no matter what demand component is financed.

(3) The exclusion of leak-ins and leak-outs. Once the additional volume of credit-money ΔM_t has been created, it is fully kept within the circuit during the whole period under consideration. By this, Moore implicitly sets the leakage to $\lambda_t = 0$ and the propensity to spend to $\varepsilon_t = 1$. Moore assumes that unspent credit-money does not leak out, but becomes deposits on bank accounts where banks use it for further business. (Moore 2006: 366) terms this 	extit{convenience lending} by depositors. Only the speed of transactions—represented by V_t—limits the multiplication. This is the reason why an endless period implies an infinite velocity multiplier, which comes along with dynamic instability as well. We will tackle this issue by combining the velocity multiplier with the extended sources and uses of
funds as discussed in section 2.

4 An integrated multiplier

The budget constraint for a credit-money economy is also valid in historical time. Now we consider the case where at the beginning of a period there is a credit-financed demand impulse circulating with a certain velocity \(V_t \Delta M_t\). The reason why it is feasible to equalize effective demand and circulating money comes with the so called reflux principle (Rochon 2008; Lavoie 1999; Kaldor and Trevithick 1981). It says that a loan is supposed to be spent. Debtors do not hold idle money because debit interest rates usually exceed credit interest rates. If there was no usage for excess credit-money, it would be repaid (Lavoie 1999: 106).

During the period agents can draw on further funds that circulate as well \(V_t \Delta D_t + V_t \Delta L_t\). Funds are used for aggregate demand \(\Delta C_t + \Delta I_t\), hoarding \(V_t \Delta H_t\) and debt settlement \(V_t \Delta R_t\):

\[
V_t \Delta M_t + V_t \Delta D_t + V_t \Delta L_t \equiv \Delta C_t + \Delta I_t + V_t \Delta H_t + V_t \Delta R_t
\]

Net debt settlement equals \(V_t (\Delta R_t - \Delta L_t)\) and net hoarding equals \(V_t (\Delta H_t - \Delta D_t)\). Let us set \(\Delta H_t - \Delta D_t = 0\) for a while, which means that we focus on additional credit creation and repayment; we neglect saving (dissaving) in terms of accumulating (reducing) receivables. The net leakage from the circuit now reads

\[
\Delta R_t - \Delta L_t = \lambda_t \Delta M_t.
\]

\(\lambda_t\) depicts the share of the credit impulse that is used for net debt settlement in each income propagation period and does not induce further demand. Taking this into account, (17) becomes

\[
V_t (1 - \lambda_t) \Delta M_t = \Delta C_t + \Delta I_t.
\]

The share of the impulse that is not used for net debt settlement induces aggregate demand, \(\Delta C_t + \Delta I_t\), which equals the additional income \(\Delta Y_t\) generated in that period. From this follows the integrated multiplier formula:

\[
\Delta Y_t = V_t (1 - \lambda_t) \Delta M_t
\]

The integrated multiplier is both time dependent and allows for inflows and outflows. There are two important channels, namely the velocity of spending \(V_t\) and the magnitude of the net leakage \(\lambda_t\) within an income propagation period. The higher the velocity, the higher is the multiplier. The more intense the leakage, the
lower is the multiplier. Both determinants are related to time, and so must be the multiplier.

Suppose the creation of an additional amount of credit-money at the beginning of period t. After the money is spent, it will induce a succession of receipts and expenditures. The economy’s average velocity V_t determines, how often the additional money circulates during a given period, i.e. how many income propagation periods take place in a certain time span. The leakage λ_t determines on average, how much of a receipt is spent again and how much of it is used for net debt settlement in each income propagation period. Together, they determine, how much additional income is generated out of the initial loan within a certain period.

So far, we only considered saving in terms of net debt settlement ($\Delta R_t - \Delta L_t$) and disregarded net hoarding ($\Delta H_t - \Delta D_t$). Clearly, both ways of net saving are non-demand and thus they have the same short run effects on income. However, from a monetary perspective net debt settlement is a definite leakage because the economy’s gross debt level and the amount of money shrinks; net hoarding, on the contrary, is not a leakage in the strict sense. It maintains the debt level, but the hoarded receivables do not circulate in the productive sphere anymore—their velocity slows down to zero. Therefore, they reduce the economy’s average velocity of spending (V_t). So, both net debt settlement and net hoarding delimit the multiplier, but through different channels. While net debt settlement reduces the amount of money through the leakage ($\lambda_t M_t$), net hoarding reduces the average velocity (V_t).

It can be shown that formula (20) is an integrated or general version of the serial and the velocity multiplier. Compared to the velocity multiplier, it is more general as it allows for a leakage through the reflux principle. Compared to the serial multiplier, it is more general as it allows for measurement of the multiplier in historical time and is not constrained to $0 < \lambda_t < 1$, i.e. it allows for additional net inflows to the circuit.

In other words: both the serial multiplier and the velocity multiplier can be derived from (20) by making special constraints. The velocity multiplier is a special case of the integrated multiplier by setting the leakage to $\lambda_t = 0$ and by equating additional credit-demand and additional investment ($\Delta M_t = \Delta I_t$). The initial investment is put in place at the very beginning of the period under consideration to ensure dimensional homogeneity. Equation (20) becomes

$$\Delta Y_t = V_t \Delta I_t$$ \hspace{1cm} (21)

which resembles equation (16).

Also the serial multiplier can be derived from (20). Moving from logical rounds to concrete time intervals requires setting the length of one round. Common

13This does not mean that the money is idle though. It may well circulate with a high velocity in the financial sphere, but from the perspective of the productive sphere it stands still.
practice defines one round as one period whereby the velocity of money is set to one per period \((V_t = 1/t)\). Moreover, the serial multiplier assigns the role of the leakage to the marginal propensity to save \((\lambda_t = s)\), and the role of additional autonomous demand to investment of the initial round \((\Delta M_t = \Delta I_0)\). This yields

\[
\Delta Y_t = (1 - s)\Delta I_0 = c\Delta I_0
\]

which is the additional income generated by consumption expenditures in the round succeeding the initial round. The transformation reveals that the usual multiplier formula is only applicable when the velocity of money is set to unity, a point which was already made by Tsiang (1956: 555-6). In other words, the income propagation period must be equal to the considered historical time period, if the standard multiplier is to be of any use.

Both special cases of the integrated multiplier make ad hoc assumptions concerning parameter values that should rather be determined empirically in order to calculate the multiplier effect for a certain time span properly. The problem of measurement has already been discussed in section 3 and it applies to the integrated multiplier as well. Figures of \(V_t\) are usually calculated as *ex post* residuals, but \(V_t\) has to be a behavioral parameter if it is to be of use for the integrated multiplier. Determining the behavioral income propagation period goes beyond the scope of this paper though.\(^{14}\) In any event, the integrated multiplier lays open the problem of the length of the multiplier period.

The integrated multiplier combines the useful properties of its special versions and avoids their questionable properties at the same time. As the income velocity of money has a concrete time dimension, our multiplier applies to processes in historical time. It does not need the comparative-static stability condition of the serial multiplier, just to generate a calculable outcome. Depending on the values and the relation of parameters \(V_t\) and \(\lambda_t\), the integrated multiplier does not necessarily converge to a finite value (as with the serial multiplier), and it does not necessarily end up infinite for an infinite period of time (as with the velocity multiplier). So, even in times of accelerating growth, when demand induces further credit-financed demand \((\lambda_t < 0)\), and in times of debt deflation, when the initial impulse is more than offset by net outflows \((\lambda_t > 1)\), the multiplicative effect is calculable for a given period.

\(^{14}\)Early contributions to the velocity approach estimate it to be about a quarter (Machlup 1965: 26); (Villard 1941: 256); (Angell 1941: 145); (Clark 1935: 87).
5 Dynamic stability of the multiplier process

It should be emphasized again that the volume of credit-money itself is not causal to the multiplier process, but comes along with effective demand. We take the credit view for two reasons. First, it is plausible that an additional autonomous demand is credit-financed. Second, the reflux principle rules out cases where someone takes out a loan and holds it idle. The integrated multiplier offers an extended view on the financing level and the time dimension of the multiplier; but there is more about it.

In section 2 we addressed the impact of different kinds of saving on dynamic stability. While net debt settlement \((\Delta R_t - \Delta L_t) \) reduces the stock of credit-money, net hoarding \((\Delta H_t - \Delta D_t) \) keeps it up. In the long run, sustained net hoarding gives rise to dynamic instability. With a one-shot credit-financed demand impulse the additional income effect will cease and income will return to its baseline value, while receivables (and liabilities) will remain on a higher level; a permanent credit-financed increase of demand yields a higher permanent level of income, while receivables (and liabilities) are accumulated. In both cases the ratio of \(\Delta M_t / \Delta Y_t \) grows infinitely, making the process stock-flow incoherent.

Only saving in terms of net debt settlement yields a dynamic equilibrium. That gives rise to a new understanding of the multiplier process in the long run: the multiplier does not show the income generating process until an initial investment is financed or paid by savings. What it does show, is the income generating process until an additional amount of credit-money is repaid.

Given a one-shot credit financed demand impulse \(\Delta M_t \) at the beginning of period \(t \), the remaining impulse at the beginning of period \(t + 1 \) is

\[
\Delta M_{t+1} = \Delta M_t - (\Delta R_t - \Delta L_t) = (1 - \lambda_t) \Delta M_t
\]

which still generates additional income in this period.\(^{15}\) The multiplier has worked out fully when at some period \(\tau \) the debt level \(M_\tau \) is back at the baseline.

This is not to say that the leakage must be positive in any event. There may be times of accelerating credit expansion that can be measured via the integrated multiplier. However, they may entail repercussions from stocks on flows that influence the parameters of the multiplier. More precisely, an increasing level of debt in the economy may enhance the propensity to settle debt (\(\lambda_t \)) and thus reduce the multiplier effect in the future. To capture these effects, the integrated multiplier can be extended to a dynamic model, where \(V_t \) and \(\lambda_t \) are endogenously determined. This is linked to the growing literature on credit cycles and their influence on the business cycle (Fisher 1933; Palley 1994; Biggs et al. 2009; Keen 2010; Raberto et al. 2011).

\(^{15}\)Again, \(\Delta M_{t+1} \) depicts the additional amount of credit money compared to the baseline scenario. It is not the difference to \(M_t \).
6 Conclusion

The present paper discussed the shortcomings of the simple Keynesian multiplier model with respect to the characteristics of a credit-money economy and a historical-time framework. Indeed, the well-known serial multiplier is a comprehensible way to model the process of expenditures and receipts stemming from an initial demand for capital goods, but the formula merely looks as though it entails an ever-valid mechanism. Reconsidering the sources and uses of funds in a credit-money economy reveals some degrees of freedom that should not be set ad hoc. When induced investment and a more realistic budget constraint are taken into account, the comparative-static stability condition \((0 < s < 1)\) may not hold. Additionally, the serial multiplier formula provides no information regarding the length of the process.

Thus, we develop an alternative approach where the stability condition is not needed to calculate a finit multiplier value. We do this by introducing a time component—an idea which is related to the so-called velocity multiplier. We combine the serial multiplier and the velocity multiplier to our integrated multiplier, which has two channels of influence—the length of an income propagation period \(1/V_t\) and the magnitude of the net leakage \(\lambda_t\). This new multiplier has several advantages. First, it takes into account a time dimension, whereby it allows for a rule-based conversion from hypothetical rounds to concrete periods. Second, with the time component the multiplier value is calculable for a given period, even when the comparative-static stability condition does not hold. Third, the budget constraint that comes with our multiplier version fits to a credit-money economy. Fourth, as we look at the multiplier from a monetary perspective, the conditions of a dynamic equilibrium are revealed, namely, a stock-flow coherent liabilities-to-income ratio (and, as a mirror image, a converging receivables-to-income ratio).

As a drawback of our model, it may be a difficult task to empirically determine the parameter values and we do not have a satisfactory solution at this point. However, it should be pointed out that the integrated multiplier lays open the issue of determining the income propagation period—an issue that is simply ignored when applying the serial multiplier.

In our multiplier version, the dynamic stability condition supersedes the comparative-static one. This makes a new understanding of the multiplier process in the long run: the multiplier does not show the process until an initial investment is financed or paid by savings. What it does show, is the income creating process until an additional amount of credit-money is repaid.

This relates the multiplier analysis to processes of leveraging and deleveraging that may entail repercussions on the parameters of the multiplier. In a next step, a dynamic model could tackle this issue by endogenising the parameters \(V_t\) and \(\lambda_t\). To put it with Machlup’s words:
‘The theory of the Multiplier, if it is to be of use to those who wish to know the possible and the probable effects of public works, must renounce the attractive appearance of neatness and preciseness. The two variables which seem to play the main parts in the play of the Multiplier must be decomposed into the all too large number of variables which play the important roles in the real world.’
(Machlup 1939: 27)

References

Biggs, M., T. Mayer and A. Pick (2009), Credit and economic recovery, DNB working paper 218, Amsterdam.

