Education, Growth and Distribution: A Heterodox Macrodynanic Perspective

Amitava Krishna Dutt

Department of Economics and Policy Studies
University of Notre Dame

July 2008
Berlin Summer School
Outline

1. Introduction
2. Education, growth and distribution: alternative perspectives
3. Education, high- and low-skilled workers, and heterodox models
4. Neo-Marxian models
5. Post-Keynesian models
6. Conclusions
1. Introduction

- How does education affect the dynamics of the capitalist economy – growth and distribution
- Orthodox neoclassical view – labor productivity growth and human capital accumulation: good for growth, often good for distribution, choice to get educated. Many models.
- Heterodox perspectives: unemployment, not so much matter of choice but access, ideological functions. Hardly any models.
- Purpose of paper: develop simple heterodox models
 - two classes of workers with different skills
 - neo-Marxian and Post-Keynesian models
2. Education, growth and distribution: alternative perspectives

- Neoclassical growth models:
 - Solow, Uzawa, Lucas
 - Postpones steady state, leads to ‘endogenous’ growth
 - Many models with workers having the same skill level, income distribution neglected
 - Some models with differential skills – often otherwise the same; distribution between them examined – matter of choice, but models examine inequality – differences in preferences, technology, cumulate through endogenous transfers

- Neoclassical trade theoretic models:
 - High- and low-skilled workers
 - US inequality
 - North-South trade and uneven development

- Heterodox models
 - Unemployment, worker-capitalist – other classes
 - Many models, but hardly any with education and skill formation, natural thing to do
 - Much informal discussion
3. Education, labor skills and heterodox models

• Education, standard and narrow perspective: improve labor skills – low-skilled to high-skilled

• Difference between low- and high-skilled workers
 – Labor augmenting, no other difference
 – Two different factors in production
 – Qualitatively different roles in economy – production versus services, production versus R&D
 – Routine, repeatable activities versus innovation and discovery
3. Education, labor skills and heterodox models, cont.

- Heterodox models – general approach, closed economy, no formal government activity, assets not formally incorporated, one good
- Two kinds of workers, high and low skilled, and capital
- Skill premium:
 \[\phi = \frac{W_H}{W_L} > 1 \]
- Input-output relations:
 \[Y = \min [kK, AL] \]
- Demand for high-skilled labor:
 \[H^d = b(\phi) \frac{K}{A}, \text{ where } b' < 0 \]
- Given \(H, K, A \) is short run. Market clear through variations in \(\phi \)
3. Education, labor skills and heterodox models, cont.

\[\Phi = b^{-1}(AH/K) = \sigma(AH/K) \]
3. Education, labor skills and heterodox models, cont.

- Technological change
 \[\dot{A} = \mathcal{A} = \mathcal{A}_0 + \mathcal{A}_1 (AH/K) \]

- Dynamics of H
 \[\frac{dH}{dt} = g(H) \quad g'>0 \]
 \[g(H) = 0 \text{ for all } H < \min \quad H > 1 \]

- General model framework: workers don’t save
 \[rK = Y - w_L L - w_H H \]
 \[C = (1-s)rK + w_L L - w_H H \]
 \[S = srK \]
4. Neo-Marxian model

• Additional assumptions
 \[Y = kK \]
 \[\psi = w_L/A \]
 \[I = srK \]

• Short run, \(K, H \) and \(A \) fixed

• Long run,
 \[\frac{dK}{dt} = I \]

\(A \) and \(H \) change as described earlier

\[h = \tau_0 + \tau_1 h + \Theta g(\sigma(h)) - s[(1 - \lambda)k - \sigma(h)h\lambda] \]
Neo-Marxian model, cont.

- Stable or unstable
- Effects of rise in
- Stable case, given assumptions, growth rate increases; distribution – from high-skilled workers to capitalists, share of low skilled workers constant

- Stable or unstable
- Effects of rise in λ
- Stable case, given assumptions, growth rate increases; distribution – from high-skilled workers to capitalists, share of low skilled workers constant
- Unstable case: growth with human capital formation, or decline. Increase in λ can change decline into upward spiral
- Extension to examine changes in λ. Low skilled workers can be hurt by λ increase
5. Post-Keynesian model

• Additional assumptions

\[P = (1+z) \frac{W_L}{A}, \text{ implies } w_L = A/(1+z) \]
and \(\zeta = 1/(1+z) \)

\[Y = C + I. \]

\[\frac{I}{K} = \gamma_0 + \gamma_r r + \gamma_u u + \gamma \]

• Short run, \(A, H, K \) given

\[r = (1-\zeta) u - \zeta h \left(\gamma + \gamma \right) \]

\[u = \frac{\gamma_0 + \lambda h \sigma(h)(s - \gamma_r) + \gamma_r (\tau_0 + \tau_1 h)}{(s - \gamma_r)(1 - \lambda) - \gamma_u} \]
5. Post-Keynesian model, cont.
5. Post-Keynesian model, cont.

- Stable and unstable
- Stable case: greater openness of education can reduce growth by reducing income of skilled workers; need not happen if there is a strong boost to investment through technological change
- Can explain cases of high access and low growth – too much skill creation with low growth; low access and high consumption-led growth
- Extension to include dynamics of λ
6. Conclusion

• Summary

• Models can be modified:
 – Saving by high-skilled workers
 – Skill premium rigidity
 – Different investment functions – wage and profit led

• Broader role for education