Forschung deutscher Unternehmen im In- und Ausland
Technologische Schwerpunkte und Zielregionen

Heike Belitz, Anna Lejpras, Anselm Mattes und Maximilian Priem
Inhalt

Tabellen ... 4
Abbildungen .. 6
1. Zusammenfassung .. 8
2. Einleitung .. 12
3. FuE-Aufwendungen deutscher Unternehmen im In- und Ausland 14
 3.1 Ziel, Daten und Methoden ... 14
 3.2 Weltweite FuE-Aufwendungen der forschungsstärksten Unternehmen .. 15
 3.3 FuE-Aufwendungen deutscher Unternehmen im In- und Ausland ... 17
4. Internationale Patentaktivitäten deutscher Unternehmen 22
 4.1 Daten, Ziel und Methode ... 22
 4.2 Branchen und Technologiefelder .. 24
 4.3 Zielländer und -regionen ... 29
 4.4 Sechs patentstärkste Unternehmen .. 33
5. Internationalisierungsstrategien deutscher Unternehmen 36
 5.1 Konzept ... 36
 5.2 Branchen .. 38
 5.3 Technologiefelder .. 41
 5.4 Zielländer .. 43
 5.5 Sechs patentstärkste Unternehmen .. 54
 5.6 Vergleich mit Ergebnissen der bisherigen Literatur 58
Literatur .. 60
Anhang .. 61
Autorinnen und Autoren ... 74
Tabellen

Tabelle 1: Weltweite FuE-Aufwendungen der forschungsstärksten deutschen Unternehmen nach Wirtschaftszweigen 2012–2014
Tabelle 2: FuE-Aufwendungen deutscher Unternehmen weltweit und im Ausland 2003–2015
Tabelle 4: Indikatoren der Unternehmen der wichtigsten Heimatländer im Datensatz EC-JRC/OECD COR&DIP© database, v.1. 2017
Tabelle 5: Gewichtete Erfindungen und Auslandsanteil der deutschen Unternehmen nach Branchen 2012–2014
Tabelle 6: Erfindungen der sechs deutschen Unternehmen mit den meisten Patentanmeldungen im In- und Ausland 2012–2014
Tabelle 7: Vier Internationalisierungsstrategien der FuE multinationaler Unternehmen
Tabelle 8: Forschungsstrategien deutscher Unternehmen im Ausland über alle Wirtschaftszweige 2012–2014 (Patentgewichte)
Tabelle 10: Forschungsstrategien deutscher Unternehmen im Ausland nach Technologiefeldern 2012–2014 (Patentgewichte)
Tabelle 11: Verteilung der Erfinder*innen deutscher Unternehmen im Ausland nach Zielländern und Strategien
Tabelle 12: Internationalisierungsstrategien der sechs patentstärksten deutschen Unternehmen 2012–2014
Tabelle 13: Patentanteile der vier Internationalisierungsstrategien der Forschung deutscher Unternehmen in der Literatur
Tabelle 14: Patentanteile ausgewählter deutscher Unternehmen im Ausland
Tabelle 15: WIPO-Technologiebereiche und -felder
Tabelle 16: Berechnung der Gewichte nach fraktionierter Zählweise am Beispiel der Erfindung 922591462

Tabelle 17: Zuordnung der Gewichte von Erfindung 9225914 nach Anmelder- und Land der Erfinder*in.................................64

Tabelle 18: Erfindungen deutscher Unternehmen im In- und Ausland nach WIPO-Technologieklassen 2012–201464

Tabelle 19: Weltweite gewichtete Erfindungen deutscher Unternehmen 2012–2014 und Auslandsanteil65

Tabelle 20: Erfindungen deutscher Unternehmen nach Zielländern 2012–2014...68

Abbildungen

Abbildung 1: FuE-Aufwendungen deutscher Unternehmen ausgewählter Branchen im In- und Ausland 2003 und 2015 18

Abbildung 2: FuE-Aufwendungen deutscher Unternehmen ausgewählter Branchen im Ausland und in Deutschland (Index:2009 = 100) ... 19

Abbildung 3: Entwicklung der FuE-Aufwendungen der Unternehmen ausgewählter Länder im In- und Ausland 1997–2015 (Index: 2009 = 100) ... 21

Abbildung 4: Erfindungen deutscher Unternehmen im In- und Ausland nach WIPO-Technologieklassen 2012–2014 26

Abbildung 5: Technologische Spezialisierung deutscher Unternehmen nach WIPO-Klassen 2012–2014 ... 28

Abbildung 8: Anteile ausländischer Forschungsstandorte an den gewichteten Patenten deutscher Unternehmen nach WIPO-Technologiebereichen 2012–2014 ... 32

Abbildung 10: Erfinder*innen in den wichtigsten Zielländern deutscher Unternehmen nach Internationalisierungsstrategien 2012–2014 ... 45

Abbildung 11: Erfinder*innen deutscher Unternehmen in den USA nach Technologiefeldern und Internationalisierungsstrategien 2012–2014 (Patentgewichte) ... 46

Abbildung 12: Erfinder*innen deutscher Unternehmen in Österreich nach Technologiefeldern und Internationalisierungsstrategien 2012–2014 (Patentgewichte) 49

Abbildung 13: Erfinder*innen deutscher Unternehmen in Frankreich nach Technologiefeldern und Internationalisierungsstrategien 2012–2014 (Patentgewichte) 51

Abbildung 14: Erfinder*innen deutscher Unternehmen in China nach Technologiefeldern und Internationalisierungsstrategien 2012–2014 (Patentgewichte) ... 52
Abbildung 15: Erfinder*innen von Robert Bosch im Ausland nach
Internationalisierungsstrategien 2012–2014 (Patentgewichte) 56

Abbildung 16: Erfinder*innen von Siemens im Ausland nach
Internationalisierungsstrategien 2012–2014 (Patentgewichte) 57

Abbildung 17: Erfinder*innen von Infineon im Ausland nach
Internationalisierungsstrategien 2012–2014 (Patentgewichte) 70

Abbildung 18: Erfinder*innen von Volkswagen im Ausland nach
Internationalisierungsstrategien 2012–2014 (Patentgewichte) 71

Abbildung 19: Erfinder*innen von Continental im Ausland nach
Internationalisierungsstrategien 2012–2014 (Patentgewichte) 72

Abbildung 20: Erfinder*innen von BASF im Ausland nach
Internationalisierungsstrategien 2012–2014 (Patentgewichte) 73
1. Zusammenfassung

Wenn deutsche Unternehmen Forschung und Entwicklung (FuE) im Ausland durchführen, wird dies oft als Verlagerung von Kapazitäten interpretiert, die dem heimischen Standort verloren gehen. Dabei müssen Unternehmen ihre Produkte und Prozesse auch in den ausländischen Zieltältern weiterentwickeln und an lokale Bedingungen und Kundenwünsche anpassen. Der Aufbau von eigenen Forschungslaboren im Ausland dient aber auch dazu, neues technologisches Wissen von Wettbewerbern, Hochschulen und Forschungsinstituten zu erwerben. Schließlich ist die Nutzung von Forschungspersonal im Zielland ein wichtiges Motiv für FuE im Ausland.

An den weltweiten Erfindungen deutscher Unternehmen im Zeitraum 2012 bis 2014 hat der Fahrzeugbau mit fast 30 Prozent den größten An-
teil, gefolgt vom Maschinenbau (18 %), dem Bereich Datenverarbeitung, Elektronik und Optik (12 %) sowie der Chemieindustrie (10 %). Auf die Unternehmen in diesen vier forschungsintensiven Branchen entfallen zusammen gut zwei Drittel aller Erfindungen. Die Erfindungen sind zudem auf wenige Unternehmen konzentriert. Gut die Hälfte entfallen auf die sechs forschungsstärksten Unternehmen, bei den Erfindungen im Ausland sind es sogar gut 60 Prozent.

Etwa jede vierte Erfindung machen deutsche Unternehmen im Ausland. Der Auslandsanteil bei den Erfindungen liegt mit 27 Prozent etwas unter dem Anteil der FuE-Aufwendungen mit 35 Prozent. Im Ausland wird also weniger FuE durchgeführt, die zu Patenten führt, also etwa Anpassungen an Kundenwünsche oder regionale Besonderheiten der Märkte. Während in Unternehmen des Fahrzeugbaus jedoch nur jede fünfte Erfindung im Ausland getätigt wird, sind es im Maschinenbau und der Chemieindustrie mit rund 30 Prozent deutlich mehr, in der Pharmaindustrie sogar 36 Prozent.

Die deutschen Unternehmen sind im internationalen Vergleich zu ihren Wettbewerbern besonders auf die „klassisch deutschen“ Technologiebereiche Maschinenbau (zu dem auch die Fahrzeugtechnik gehört) sowie Chemie und Pharma spezialisiert. Dagegen weisen sie im gesamten Bereich der Elektrotechnik, der auch Informations- und Kommunikationstechnologien einschließt, Spezialisierungsnachteile auf.

Dabei konzentrieren sich die deutschen Unternehmen im Inland und im Ausland im Großen und Ganzen auf die gleichen Technologiefelder. Ausnahmen bilden die relativ kleinen Bereiche Biotechnologie und die Nahrungsmittelchemie, auf die deutsche Unternehmen nur im Ausland spezialisiert sind. In der Grundlegenden Kommunikationstechnik und der Datenverarbeitung haben sie zwar im Heimatland Spezialisierungsnachteile, im Ausland jedoch nicht.

In den Technologiebereichen der Elektrotechnik und des Maschinenbaus dominiert die EU als wichtigste Forschungsregion im Ausland. Asi-
en hat im Bereich der Elektrotechnik relativ hohe Patentanteile, die USA bei den chemischen Technologien.

Der Auslandsanteil der Forschungsaktivitäten unterscheidet sich auch zwischen den deutschen Unternehmen deutlich. Unter den sechs forschungsstärksten Unternehmen hat Infineon mit 44 Prozent den größten Auslandsanteil, bei Volkswagen ist er dagegen mit gut 19 Prozent weniger als halb so groß.

Drei Viertel der FuE-Aktivitäten im Ausland finden in Forschungsfeldern statt, in denen die Unternehmen in der Heimat im internationalen Vergleich technologische Spezialisierungsvorteile haben. Forschung im Ausland beruht also in den meisten Fällen auf der technologischen Stärke am Heimatstandort der Unternehmen. In der Internationalisierung dominiert die wissenserweiternde Strategie (home-base augmenting, HBA), auf die knapp 50 Prozent der Erfindungstätigkeit im Ausland entfallen. Ein weiteres Viertel der Aktivitäten ist der wissensnutzenden Strategie (home-base exploiting, HBE) zuzurechnen. Nur 12 Prozent der Patente im Ausland weisen auf eine technologiesuchende Strategie hin (technology seeking, TS), bei der das Unternehmen im Ausland in Feldern forscht, in denen es in der Heimat relativ schwach ist, das Zielland jedoch über technologische Stärke verfügt.

Während die Unternehmen im Technologiebereich Elektrotechnik alle vier Internationalisierungsstrategien zu etwa gleichen Anteilen verfolgen, dominieren im Maschinenbau, in der Chemie und bei den Instrumenten die Strategien, die auf heimatbasierten Wissensvorteilen aufbauen. Außerhalb der Elektrotechnik liegt der Schwerpunkt klar bei den HBA-Strategien, bei denen Unternehmen am Heimatstandort und die Zielländer auf die jeweiligen Technologien spezialisiert sind. Dort werden also von den Unternehmen die heimischen Vorteile mit technologischen Vorteilen im Ausland kombiniert.

Die technologiesuchende TS-Strategie dominiert unter den für deutsche Unternehmen besonders wichtigen Technologiefeldern nur in der Computertechnik.

Technologiesuchende Strategien deutscher Unternehmen haben allerdings in den USA, Österreich, Dänemark, Südkorea und Singapur einen überdurchschnittlichen Anteil. Diese wissenssuchenden Forschungsstrategien sind also überwiegend in besonders forschungsintensiven, z. T. auch weit entfernten Ländern zu finden. Wissenserweiterung durch Internationalisierung (HBA) streben deutsche Unternehmen eher in näher gelegenen europäischen Ländern an. In der Forschung in China dominiert eindeutig die wissensnutzende Strategie (HBE), die vor allem der Anpassung der Produkte und Prozesse an die Bedingungen des Ziellandes dient.
Die Ergebnisse der Studie zeigen, dass deutsche Unternehmen FuE im Ausland überwiegend aus einer Position der technologischen Stärke im Heimatland betreiben. Meistens ergänzen und erweitern die Auslandsaktivitäten die Forschung in Deutschland (HBA). Weitere wichtige Motive dürften die Anpassung der Prozesse an Bedingungen im Ausland sowie die kundenspezifische Forschung im Zielmarkt sein (HBE). Internationalisierungsstrategien, in denen deutsche Unternehmen FuE im Ausland aus einer Position der technologischen Schwäche im Heimatland betreiben, haben ein relativ geringes Gewicht. Dies spricht dafür, dass nicht nur die deutschen Unternehmen von ihrer Forschung im Ausland profitieren, sondern auch, dass der Forschungsstandort Deutschland durch die internationalen FuE-Aktivitäten der einheimischen Unternehmen nicht an technologischer Stärke verliert.
2. Einleitung

In dieser Studie werden Forschung und Entwicklung (FuE) deutscher Unternehmen im In- und Ausland untersucht. Auf Basis der Analyse von Daten zu FuE-Aufwendungen und Patentanmeldungen werden Anhaltspunkte zu den Motiven der forschungsstärksten deutschen Unternehmen für FuE-Aktivitäten im Ausland gewonnen. Wird die Internationalisierung von FuE durch den Erwerb von neuem technologischem Wissen oder durch die Anforderungen an Produkte und Prozesse im Zielmarkt getrieben? Erweitern die Unternehmen ihr Wissen im Ausland in technologischen Feldern, in denen sie bereits stark sind oder in denen nur ausländische Standorte über neues Wissen verfügen?

Gefragt wird auch, ob deutsche Unternehmen in einzelnen Technologiefeldern im Ausland stärker FuE betreiben als in Deutschland und in welchen Ländern sich die wichtigsten ausländischen Forschungsstandorte für unterschiedliche Technologiefelder befinden. Dazu wird das technologische Portfolio der deutschen Unternehmen im Heimatland und in den wichtigsten Zielländern von Auslandsforschung mit der technologischen Spezialisierung der jeweiligen Forschungsstandorte verglichen. Analysiert wird, ob deutsche Unternehmen im Ausland besonders in den Technologiefeldern mit FuE aktiv sind, auf welche die Zielländer technologisch spezialisiert sind oder ob sich ihre technologischen Stärken im Heimatland auch im Ausland wiederfinden. Die Studie soll dazu dienen, Ausmaß und Motive der Internationalisierung von FuE in deutschen Unternehmen besser zu verstehen und absehbare Folgen für den Forschungsstandort Deutschland und die forschenden Unternehmen zu erkennen.

Unsere Studie ermöglicht die unternehmensbezogene Analyse der weltweiten FuE-Aktivitäten nach Technologiefeldern und Zielländern, indem sie zwei Datensätze verbindet:

3. FuE-Aufwendungen deutscher Unternehmen im In- und Ausland

3.1 Ziel, Daten und Methoden

Deutschland gehört zu den bedeutenden Heimatländern forschungsstarker multinationaler Unternehmen, die weltweit FuE-Aktivitäten durchführen. Aus den nationalen FuE-Statistiken gibt es aber nur begrenzt Informationen zur internationalen Verteilung der FuE-Aufwendungen dieser Unternehmen. In diesem Kapitel wird die Internationalisierung der FuE deutscher Unternehmen im Ausland anhand aktueller FuE-Daten dargestellt.

Die FuE-Aufwendungen deutscher Unternehmen im Ausland werden von der SV-Wissenschaftsstatistik ermittelt, indem von den globalen FuE-Aufwendungen der 100 forschungsstärksten deutschen Unternehmen, die in den Geschäftsberichten veröffentlicht sind, die FuE-Aufwendungen dieser Unternehmen im Inland abgezogen werden (Schasse, Belitz, Kladroba & Stenke, 2016). Allerdings ist die Aussagekraft der FuE-Daten für das Ausland aus verschiedenen Gründen beschränkt:

- Aus den Geschäftsberichten geht oftmals nicht hervor, ob die dort angegebenen Werte nur interne FuE oder auch externe FuE beinhalten.
- Eine Erfassung auf der Basis der kleinsten selbständig bilanziierenden Einheit kann nicht realisiert werden. Während in der nationalen FuE-Statistik eine individuelle Zuordnung jedes Unternehmensteils zu einem Wirtschaftszweig erfolgen kann, muss man sich bei der Ermittlung der FuE-Aufwendungen im Ausland oftmals darauf beschränken, dem Gesamtkonzern einen Wirtschaftszweig zuzuordnen.
- In den Geschäftsberichten erfolgt in der Regel keine oder nur eine sehr grobe regionale Unterteilung. In welchen Regionen deutsche
Unternehmen FuE betreiben, kann somit nicht ermittelt werden (Czernich & Kladroba, 2013).

Schließlich wird in diesem Kapitel auch die Entwicklung der Internationalisierung der FuE deutscher Unternehmen mit der von Unternehmen aus den USA und Schweden verglichen, für die entsprechende Daten aus der jeweiligen nationalen Statistik vorliegen.

3.2 Weltweite FuE-Aufwendungen der forschungsstärksten Unternehmen

Die 114 forschungsstärksten deutschen Unternehmen, die im EC-JRC/OECD-Datensatz enthalten sind, haben im Jahr 2014 weltweit zusammen gut 62 Milliarden Euro für FuE verausgabt (Tabelle 1). Das waren 7 Milliarden Euro mehr als 2012. Im Zeitraum von 2012 bis 2014 entfielen 10,5 Prozent der FuE-Aufwendungen aller 2.000 Unternehmen im EC-JRC/OECD-Datensatz auf deutsche Unternehmen. Die meisten FuE-Aufwendungen hatten US-amerikanische Unternehmen (38,1 %), gefolgt von japanischen (14,6 %) (siehe auch Tabelle 4).

Ordnert man die Unternehmen insgesamt Wirtschaftszweigen zu, so entfiel im Zeitraum von 2012 bis 2014 knapp die Hälfte (46 %) der FuE-Aufwendungen der deutschen Unternehmen auf den Fahrzeugbau. Es folgten mit deutlichem Abstand Unternehmen der pharmazeutischen Industrie mit einem Anteil von 14 Prozent, des Maschinenbaus mit 10 Prozent und der Chemieindustrie mit 6 Prozent. Somit geben Unternehmen dieser vier Branchen etwa drei Viertel der weltweiten FuE-Aufwendungen deutscher Unternehmen aus (Tabelle 1).

Tabelle 1: Weltweite FuE-Aufwendungen der forschungsstärksten deutschen Unternehmen nach Wirtschaftszweigen 2012–2014

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01–03</td>
<td>Land- u. Forstwirt., Fischerei</td>
<td>127 Mio. €</td>
<td>141 Mio. €</td>
<td>149 Mio. €</td>
<td>416 Mio. €</td>
</tr>
<tr>
<td>10–12</td>
<td>Nahrungsmittel, Getränke, Tabak</td>
<td>42 Mio. €</td>
<td>43 Mio. €</td>
<td>40 Mio. €</td>
<td>125 Mio. €</td>
</tr>
<tr>
<td>13–15</td>
<td>Textilien, Bekleidung, Schuhe</td>
<td>190 Mio. €</td>
<td>181 Mio. €</td>
<td>163 Mio. €</td>
<td>534 Mio. €</td>
</tr>
<tr>
<td>16–18</td>
<td>Holzwaren, Papier, Druckerzeugnisse</td>
<td>131 Mio. €</td>
<td>130 Mio. €</td>
<td>129 Mio. €</td>
<td>390 Mio. €</td>
</tr>
<tr>
<td>19</td>
<td>Kokerei u. Mineralölverarb.</td>
<td>29 Mio. €</td>
<td>31 Mio. €</td>
<td>33 Mio. €</td>
<td>93 Mio. €</td>
</tr>
<tr>
<td>20</td>
<td>Chemische Erzeugnisse</td>
<td>3.382 Mio. €</td>
<td>3.438 Mio. €</td>
<td>3.491 Mio. €</td>
<td>10.311 Mio. €</td>
</tr>
<tr>
<td>21</td>
<td>Pharmazeutische Erzgn.</td>
<td>7.931 Mio. €</td>
<td>8.004 Mio. €</td>
<td>8.589 Mio. €</td>
<td>24.524 Mio. €</td>
</tr>
<tr>
<td>24–25</td>
<td>Metallverarbeitung, -erzgn.</td>
<td>416 Mio. €</td>
<td>481 Mio. €</td>
<td>519 Mio. €</td>
<td>1.416 Mio. €</td>
</tr>
<tr>
<td>26</td>
<td>DV-geräte, Elektronik, Optik</td>
<td>1.766 Mio. €</td>
<td>1.850 Mio. €</td>
<td>2.010 Mio. €</td>
<td>5.626 Mio. €</td>
</tr>
<tr>
<td>27</td>
<td>Elektrische Ausrüstungen</td>
<td>897 Mio. €</td>
<td>935 Mio. €</td>
<td>964 Mio. €</td>
<td>2.796 Mio. €</td>
</tr>
<tr>
<td>28</td>
<td>Maschinenbau</td>
<td>5.832 Mio. €</td>
<td>5.876 Mio. €</td>
<td>5.995 Mio. €</td>
<td>17.702 Mio. €</td>
</tr>
<tr>
<td>29–30</td>
<td>Fahrzeugbau</td>
<td>24.529 Mio. €</td>
<td>27.071 Mio. €</td>
<td>28.907 Mio. €</td>
<td>80.507 Mio. €</td>
</tr>
<tr>
<td>35</td>
<td>Energieversorgung</td>
<td>435 Mio. €</td>
<td>411 Mio. €</td>
<td>346 Mio. €</td>
<td>1.192 Mio. €</td>
</tr>
<tr>
<td>49–53</td>
<td>Verkehr u. Lagerei</td>
<td>220 Mio. €</td>
<td>216 Mio. €</td>
<td>250 Mio. €</td>
<td>686 Mio. €</td>
</tr>
<tr>
<td>58–60</td>
<td>Verlage, Medien, Rundfunk</td>
<td>2.443 Mio. €</td>
<td>2.470 Mio. €</td>
<td>2.507 Mio. €</td>
<td>7.420 Mio. €</td>
</tr>
<tr>
<td>61</td>
<td>Telekommunikation</td>
<td>164 Mio. €</td>
<td>240 Mio. €</td>
<td>220 Mio. €</td>
<td>624 Mio. €</td>
</tr>
<tr>
<td>62–63</td>
<td>IT Dienstleistungen</td>
<td>117 Mio. €</td>
<td>154 Mio. €</td>
<td>162 Mio. €</td>
<td>433 Mio. €</td>
</tr>
<tr>
<td>64–66</td>
<td>Finanzen u. Versicherungen</td>
<td>1.316 Mio. €</td>
<td>1.376 Mio. €</td>
<td>1.787 Mio. €</td>
<td>4.480 Mio. €</td>
</tr>
<tr>
<td>69–71</td>
<td>Freiberufl. u. techn. Dienste</td>
<td>1.388 Mio. €</td>
<td>1.470 Mio. €</td>
<td>1.587 Mio. €</td>
<td>4.445 Mio. €</td>
</tr>
<tr>
<td>72</td>
<td>Forschung und Entwicklung</td>
<td>35 Mio. €</td>
<td>44 Mio. €</td>
<td>48 Mio. €</td>
<td>126 Mio. €</td>
</tr>
<tr>
<td>73–75</td>
<td>Sonst. wiss. u. techn. Tätigkeiten</td>
<td>52 Mio. €</td>
<td>55 Mio. €</td>
<td>63 Mio. €</td>
<td>169 Mio. €</td>
</tr>
<tr>
<td>Insgesamt</td>
<td>55.297 Mio. €</td>
<td>58.627 Mio. €</td>
<td>62.297 Mio. €</td>
<td>176.222 Mio. €</td>
<td>100 %</td>
</tr>
</tbody>
</table>

3.3 FuE-Aufwendungen deutscher Unternehmen im In- und Ausland

Tabelle 2: FuE-Aufwendungen deutscher Unternehmen weltweit und im Ausland 2003–2015

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weltweit</td>
<td>36,3 Mrd.€</td>
<td>38,6 Mrd.€</td>
<td>48,4 Mrd.€</td>
<td>68,9 Mrd.€</td>
</tr>
<tr>
<td>darunter:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in Deutschland</td>
<td>25,4 Mrd.€</td>
<td>29,2 Mrd.€</td>
<td>33,6 Mrd.€</td>
<td>44,9 Mrd.€</td>
</tr>
<tr>
<td>im Ausland</td>
<td>10,9 Mrd.€</td>
<td>9,4 Mrd.€</td>
<td>14,8 Mrd.€</td>
<td>23,9 Mrd.€</td>
</tr>
<tr>
<td>Auslandsanteil</td>
<td>30,0 %</td>
<td>24,4 %</td>
<td>30,5 %</td>
<td>34,8 %</td>
</tr>
</tbody>
</table>

Quellen: SV Wissenschaftsstatistik, eigene Berechnungen.

Insgesamt entfällt also das Gros der FuE im Ausland auf den Kraftfahrzeugbau und die Pharmaindustrie. Bereits mehr als die Hälfte der FuE-Aufwendungen verausgaben Pharmaunternehmen im Ausland. Einen noch höheren Auslandsanteil haben die deutschen Finanz- und Versicherungsdienstleister, die mit 1,5 Milliarden Euro sogar 88 Prozent ih-

Abbildung 1: FuE-Aufwendungen deutscher Unternehmen ausgewählter Branchen im In- und Ausland 2003 und 2015

Quellen: SV Wissenschaftsstatistik; eigene Berechnungen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemie</td>
<td>34 %</td>
<td>30 %</td>
<td>27 %</td>
<td>28 %</td>
</tr>
<tr>
<td>Pharma</td>
<td>50 %</td>
<td>69 %</td>
<td>54 %</td>
<td>58 %</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>32 %</td>
<td>20 %</td>
<td>33 %</td>
<td>41 %</td>
</tr>
<tr>
<td>Computer, Elektrotechnik, Optik</td>
<td>37 %</td>
<td>29 %</td>
<td>34 %</td>
<td>37 %</td>
</tr>
<tr>
<td>Kraftfahrzeugbau</td>
<td>21 %</td>
<td>16 %</td>
<td>23 %</td>
<td>24 %</td>
</tr>
<tr>
<td>Information u. Kommunikation</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>40 %</td>
</tr>
<tr>
<td>Finanz- u. Versicherungsdienste</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>88 %</td>
</tr>
<tr>
<td>Insgesamt</td>
<td>30 %</td>
<td>24 %</td>
<td>30 %</td>
<td>35 %</td>
</tr>
</tbody>
</table>

Quellen: SV Wissenschaftsstatistik, eigene Berechnungen.

Abbildung 2: FuE-Aufwendungen deutscher Unternehmen ausgewählter Branchen im Ausland und in Deutschland (Index:2009 = 100)

Quellen: SV Wissenschaftsstatistik, eigene Berechnungen.
Abbildung 3: Entwicklung der FuE-Aufwendungen der Unternehmen ausgewählter Länder im In- und Ausland 1997–2015 (Index: 2009 = 100)

Quellen: Nationale Statistiken, eigene Berechnungen.
4. Internationale Patentaktivitäten deutscher Unternehmen

4.1 Daten, Ziel und Methode

Der zweite Datensatz, PATSTAT, wird von der europäischen Patentbehörde (EPO) herausgegeben und enthält bibliografische Daten sowie Rechtsstandsdaten zu mehr als 100 Millionen Patenten weltweit. Für die vorliegende Studie fand Version 5.11 des PATSTAT-Datensatzes Verwendung, die im April 2018 veröffentlicht wurde.

Um Doppelzählungen bei Mehrfachanmeldungen von Erfindungen in mehreren Ländern/Regionen zu vermeiden, wird die Auswertung auf Ebene der so genannten Patentfamilien vorgenommen. Patentfamilien fassen die Patentanmeldungen zu einer Erfindung an den fünf genannten Patentämtern zusammen. Die Zuordnung der einzelnen Anmeldungen erfolgt über die INPADOC-Nummer, die ebenfalls dem PATSTAT-

Von den 2.000 Unternehmen im Datensatz haben 1.668 Unternehmen im Zeitraum 2012–2014 Patente angemeldet. Auf die 104 deutschen Unternehmen entfallen 8 Prozent aller im Datensatz enthaltenen Patente (Tabelle 4).

<table>
<thead>
<tr>
<th>Land</th>
<th>Unternehmen</th>
<th>Erfindungen</th>
<th>FuE-Ausgaben 2012–2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>570</td>
<td>34 %</td>
<td>23 %</td>
</tr>
<tr>
<td>Japan</td>
<td>292</td>
<td>18 %</td>
<td>34 %</td>
</tr>
<tr>
<td>China</td>
<td>107</td>
<td>6 %</td>
<td>3 %</td>
</tr>
<tr>
<td>Deutschland</td>
<td>104</td>
<td>6 %</td>
<td>8 %</td>
</tr>
<tr>
<td>Großbritannien</td>
<td>89</td>
<td>5 %</td>
<td>1 %</td>
</tr>
<tr>
<td>Restliche Länder (35)</td>
<td>506</td>
<td>30 %</td>
<td>30 %</td>
</tr>
<tr>
<td>Gesamt</td>
<td>1.668</td>
<td>100 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

in denen es mehrere Anmeldungen mit dem gleichen Datum gibt, sind die Korrespondenzadressen aller Erfinder*innen dieser Anmeldungen in die Abbildung des Erfindungsortes eingegangen. In Fällen, in denen keine Erfinder*inneninformationen zur ältesten Anmeldung einer Patentfamilie vorlagen, wurde auf die nächstälteste Anmeldung mit entsprechenden Informationen zurückgegriffen.

4.2 Branchen und Technologiefelder

Zunächst werden die FuE-Aktivitäten der Unternehmen in Deutschland und im Ausland nach Wirtschaftszweigen unterteilt betrachtet (Tabelle 5), wobei jedes Unternehmen vollständig der Branche zugeordnet wird, in der es seinen wirtschaftlichen Schwerpunkt hat.2

Der Fahrzeugbau hat mit 29,2 Prozent den größten Anteil an allen Erfindungen deutscher Unternehmen. Es folgen der Maschinenbau (18,5 %), der Bereich Datenverarbeitung, Elektronik und Optik (12,2 %) sowie die Chemieindustrie (9,8 %). Auf die Unternehmen in diesen vier forschungsintensiven Branchen entfallen zusammen gut zwei Drittel aller deutschen Erfindungen weltweit.

Etwa jede vierte Erfindung machen deutsche Unternehmen im Ausland (27 %). Während in Unternehmen des Fahrzeugbaus jedoch nur jede fünfte Erfindung im Ausland getätigt wird, sind es in den anderen forschungsstarken Branchen deutlich mehr. Der Auslandsanteil bei den Erfindungen liegt dort bei 29 Prozent (Chemie) bis 36 Prozent (Pharmaindustrie).

Die Erfindungen deutscher Unternehmen können verschiedenen Technologiefeldern zugeordnet werden. Die Zuordnung erfolgt zu

1 Robustheit der Ergebnisse dieser Studie auch mit anderen Zuordnungsmethoden überprüft. Dabei ergaben sich keine nennenswerten Abweichungen.
2 Das heißt auch die Patentanmeldungen von Tochterunternehmen, die möglicherweise in anderen Branchen als der Mutterkonzern aktiv sind, werden der Branche des Mutterkonzerns zugeordnet.
35 Technologieklassen, die wiederum zu fünf übergeordneten Bereichen zusammengefasst werden können (siehe Tabelle 15). Die Erfindungen der hier untersuchten deutschen Unternehmen konzentrieren sich auf die Technologiefelder Elektrische Maschinen und Anlagen, Transport, Messtechnik und Motoren, Pumpen, Turbinen (Abbildung 4).

Tabelle 5: Gewichtete Erfindungen und Auslandsanteil der deutschen Unternehmen nach Branchen 2012–2014

<table>
<thead>
<tr>
<th>ISIC</th>
<th>Wirtschaftsbereich</th>
<th>Anteil an allen Erfindungen</th>
<th>Auslandsanteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>01–03</td>
<td>Land- u. Forstwirtschaft, Fischerei</td>
<td>0,02 %</td>
<td>22 %</td>
</tr>
<tr>
<td>10–12</td>
<td>Nahrungsmittel, Getränke, Tabak</td>
<td>0,04 %</td>
<td>24 %</td>
</tr>
<tr>
<td>13–15</td>
<td>Textilien, Bekleidung, Leder, Schuhe</td>
<td>0,26 %</td>
<td>56 %</td>
</tr>
<tr>
<td>16–18</td>
<td>Holzwaren, Papier, Druckerzeugnisse</td>
<td>0,87 %</td>
<td>4 %</td>
</tr>
<tr>
<td>19</td>
<td>Kokerei und Mineralölverarbeitung</td>
<td>0,01 %</td>
<td>20 %</td>
</tr>
<tr>
<td>20</td>
<td>Chemische Erzeugnisse</td>
<td>9,76 %</td>
<td>29 %</td>
</tr>
<tr>
<td>21</td>
<td>Pharmazeutische Erzeugnisse</td>
<td>5,37 %</td>
<td>36 %</td>
</tr>
<tr>
<td>22–23</td>
<td>Gummi, Kunststoffe, Glas, Keramik</td>
<td>4,90 %</td>
<td>36 %</td>
</tr>
<tr>
<td>24–25</td>
<td>Metallerzeugn., -bearb., -erzeugnisse</td>
<td>2,24 %</td>
<td>14 %</td>
</tr>
<tr>
<td>26</td>
<td>DV-geräte, Elektronik, Optik</td>
<td>12,19 %</td>
<td>32 %</td>
</tr>
<tr>
<td>27</td>
<td>Elektrische Ausrüstungen</td>
<td>3,31 %</td>
<td>24 %</td>
</tr>
<tr>
<td>28</td>
<td>Maschinenbau</td>
<td>18,50 %</td>
<td>30 %</td>
</tr>
<tr>
<td>29–30</td>
<td>Fahrzeugbau</td>
<td>29,17 %</td>
<td>20 %</td>
</tr>
<tr>
<td>31–33</td>
<td>Rep., Install. v. Masch. u. Ausrüstg.</td>
<td>2,07 %</td>
<td>23 %</td>
</tr>
<tr>
<td>35</td>
<td>Energieversorgung</td>
<td>0,35 %</td>
<td>11 %</td>
</tr>
<tr>
<td>45–47</td>
<td>Handel; Instandhltg. u. Rep. von Kfz</td>
<td>2,99 %</td>
<td>16 %</td>
</tr>
<tr>
<td>49–53</td>
<td>Verkehr und Lagerei</td>
<td>0,61 %</td>
<td>5 %</td>
</tr>
<tr>
<td>58–60</td>
<td>Verlag, Medien, Rundfunk</td>
<td>1,18 %</td>
<td>55 %</td>
</tr>
<tr>
<td>61</td>
<td>Telekommunikation</td>
<td>0,59 %</td>
<td>34 %</td>
</tr>
<tr>
<td>62–63</td>
<td>IT-Dienstleistungen</td>
<td>0,21 %</td>
<td>21 %</td>
</tr>
<tr>
<td>64–66</td>
<td>Finanzen u. Versicherungen</td>
<td>0,11 %</td>
<td>26 %</td>
</tr>
<tr>
<td>69–71</td>
<td>Freiberufl. u. techn. Dienstleistg.</td>
<td>5,22 %</td>
<td>29 %</td>
</tr>
<tr>
<td>72</td>
<td>Forschung und Entwicklung</td>
<td>0,03 %</td>
<td>6 %</td>
</tr>
<tr>
<td>Insgesamt</td>
<td></td>
<td>100 %</td>
<td>27 %</td>
</tr>
</tbody>
</table>

Für die Anteile aller WIPO-Technologieklassen siehe Tabelle 18 im Anhang.
Abbildung 4: Erfindungen deutscher Unternehmen im In- und Ausland nach WIPO-Technologieklassen 2012–2014

Um zu analysieren, auf welche Technologiefelder sich deutsche Unternehmen mit ihren Erfindungen im Heimat- und Ausland spezialisiert haben, wird ein relativer Spezialisierungsindex herangezogen (RTA, revealed technological advantage).\(^4\)

Der RTA-Index wird wie folgt berechnet:

\[
RTA_{tr} = \left(\frac{p_{tr}}{\sum_{r} p_{tr}} \right) / \left(\frac{\sum_{t} p_{tr}}{\sum_{tr} p_{tr}} \right)
\]

wobei \(p_{tr}\) die Anzahl der Patente ist, die in einem bestimmten Technologiefeld \(t\) und Land (Region) \(r\) angemeldet wurden.

\(^4\) Siehe Le Bas & Sierra, 2002.
In diesem Kapitel wird der RTA deutscher Unternehmen differenziert nach Forschungsstandorten ermittelt, d. h. nach Standorten der Erfinder*innen dieser Unternehmen im Heimatland und im Ausland:

- **RTA Heimatland** misst die technologische Spezialisierung deutscher Unternehmen im Heimatland im Vergleich zu allen forschungsstarken Unternehmen weltweit. Hierzu wird der Anteil der Patentanmeldungen mit Erfinder*innen in Deutschland in einem gegebenen Technologiefeld an allen Patentanmeldungen mit Erfinder*innen in Deutschland für die deutschen Unternehmen ins Verhältnis zum weltweiten Anteil der angemeldeten Patente in diesem Technologiefeld an allen Patentanmeldungen für alle Unternehmen gesetzt.

- **RTA Ausland** misst die technologische Spezialisierung deutscher Unternehmen im Ausland im Vergleich zu allen forschungsstarken Unternehmen weltweit. Der **RTA Ausland** entspricht dem Anteil der Patentanmeldungen mit Erfinder*innen im Ausland in dem jeweiligen Technologiefeld an allen im Ausland erforschten Patentanmeldungen deutscher Unternehmen bezogen auf den Anteil der in diesem Technologiefeld angemeldeten Patente an allen Patenten weltweit.

Der Index nimmt einen Wert zwischen 0 und 1 an, wenn der Anteil der Patentanmeldungen der untersuchten Unternehmen in der Region im betrachteten Technologiefeld kleiner ist als ihr Anteil an den globalen Patenten und somit keine Spezialisierung vorliegt. Ein Wert von 1 bedeutet, dass der Anteil eines Technologiefeldes der Unternehmen in der Region dem globalen Anteil entspricht. Werte über 1 zeigen einen höheren Anteil von Patenten in diesem Feld als im Durchschnitt und somit eine relative technologische Spezialisierung der Unternehmen in der betrachteten Region auf das jeweilige Technologiefeld.\(^5\)

Ferner zeigt sich, dass deutsche Unternehmen im Großen und Ganzen im Ausland in den gleichen Technologiefeldern wie im Inland spezialisiert sind. Es gibt allerdings einzelne Ausnahmen, wie die Biotech-

\(^5\) Da die klassische RTA-Skala nicht intuitiv interpretierbar ist, wird zudem der RTA wie folgt transformiert: \(RTA_{mod} = 100 \times \tanh \ln(RTA)\). Durch die Umformung mit dem Tangens hyperbolicus und die Logarithmierung wird der RTA ein symmetrisches Maß mit Werten zwischen –100 und +100.

Abbildung 5: Technologische Spezialisierung deutscher Unternehmen nach WIPO-Klassen 2012–2014

4.3 Zielländer und -regionen

Aus einigen Zielländern der FuE deutscher Unternehmen gibt es Informationen in den nationalen Statistiken über ihre dortigen FuE-Aufwendungen im Jahr 2015. Der Zusammenhang zwischen den FuE-Aufwendungen und den hier berechneten gewichteten Erfindungen der deut-

Abbildung 8: Anteile ausländischer Forschungsstandorte an den gewichteten Patenten deutscher Unternehmen nach WIPO-Technologiebereichen 2012–2014

4.4 Sechs patentstärkste Unternehmen

Die Robert Bosch GmbH meldete im Beobachtungszeitraum die meisten weltweiten Erfindungen der untersuchten Unternehmen an (17,2 %). Ein knappes Viertel dieser Erfindungen geht auf Forschung im Ausland zurück. Das entspricht einem Anteil von 15,4 Prozent aller Patentaktivitäten, die von deutschen Unternehmen im Ausland getätigt wurden. Die meisten Patentaktivitäten aller deutschen Unternehmen im Ausland verzeichnet die Siemens AG (17,2 %), die nach der Gesamtzahl aller Patentanmeldungen auf Platz 2 der deutschen Unternehmen kommt.

Der Auslandsanteil der Forschungsaktivitäten der Unternehmen unterscheidet sich deutlich. Volkswagen und Bosch haben mit gut 19 Prozent bzw. knapp 24 Prozent relativ geringe Anteile ihrer patentrelevanten Forschungsaktivitäten im Ausland. Die anderen ausgewählten Unternehmen liegen deutlich darüber, wobei Infineon mit 44 Prozent den größten Auslandsanteil aufweist.

6 Informationen zu Erfindungen und Auslandsaktivitäten weiterer deutscher Unternehmen finden sich in Tabelle 19 im Anhang.
Tabelle 6: Erfindungen der sechs deutschen Unternehmen mit den meisten Patentanmeldungen im In- und Ausland 2012–2014

<table>
<thead>
<tr>
<th>Unternehmen</th>
<th>Weltweit</th>
<th>im Deutschland</th>
<th>im Ausland</th>
<th>Anteil im Ausland</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROBERT BOSCH</td>
<td>17,2 %</td>
<td>17,9 %</td>
<td>15,4 %</td>
<td>23,8 %</td>
</tr>
<tr>
<td>SIEMENS</td>
<td>11,6 %</td>
<td>9,6 %</td>
<td>17,2 %</td>
<td>39,3 %</td>
</tr>
<tr>
<td>INFINEON TECHNOLOGIES</td>
<td>7,2 %</td>
<td>5,5 %</td>
<td>12,0 %</td>
<td>44,2 %</td>
</tr>
<tr>
<td>VOLKSWAGEN</td>
<td>7,2 %</td>
<td>7,9 %</td>
<td>5,2 %</td>
<td>19,3 %</td>
</tr>
<tr>
<td>CONTINENTAL</td>
<td>4,8 %</td>
<td>4,1 %</td>
<td>6,5 %</td>
<td>36,4 %</td>
</tr>
<tr>
<td>BASF</td>
<td>4,2 %</td>
<td>3,5 %</td>
<td>6,1 %</td>
<td>39,0 %</td>
</tr>
<tr>
<td>Insgesamt</td>
<td>52,2 %</td>
<td>48,5 %</td>
<td>62,4 %</td>
<td>–</td>
</tr>
</tbody>
</table>

7 Eine detaillierte Auflistung der Forschungsaktivitäten deutscher Unternehmen nach Zielländern befindet sich in Tabelle 20 im Anhang.
Abbildung 9: Anteile ausländischer Forschungsstandorte an den gewichteten Patenten ausgewählter Unternehmen 2012–2014

5. Internationalisierungsstrategien deutscher Unternehmen

5.1 Konzept

In diesem Kapitel wird untersucht, ob deutsche Unternehmen im Ausland besonders in den Technologien forschen, bei denen die Zielländer technologische Vorteile haben, auf die sie also im weltweiten Vergleich besonders spezialisiert sind. Dies wäre ein Anhaltspunkt dafür, dass deutsche Unternehmen in diesen Ländern vor allem ihre technologischen Kompetenzen erweitern wollen. Forschen sie dagegen in Technologiebereichen, auf die diese Zielländer nicht spezialisiert sind, dürften eher marktbezogene Motive vorliegen.

Hierzu wird wiederum für deutsche Unternehmen im Heimatland und für die betrachteten Zielländer der FuE deutscher Unternehmen im Ausland ein relativer Spezialisierungsindex (RTA) gebildet (siehe auch Abschnitt 2.1).

Der RTA (Revealed Technological Advantage) wird hier für einzelne deutsche Unternehmen und die Zielländer wie folgt berechnet:

\[RTA_{tr} = \frac{\left(\sum_t p_{tr} \right)}{\left(\sum_t \sum_r p_{tr} \right)} \]

wobei \(t \) der Index für das Technologiefeld und \(r \) der Index für die jeweilige Unternehmensauswahl oder das jeweilige das Land (bzw. die Region) ist.

Zur Unterscheidung der Internationalisierungsstrategien deutscher Unternehmen in FuE wird ein Klassifizierungsschema verwendet, das die Patentportfolios der Unternehmen nutzt und in der Literatur bereits mehrfach angewendet wurde (Patel & Vega, 1999; Le Bas & Sierra, 2002). Die vier Strategien der Unternehmen in der jeweiligen Zielregion werden dabei anhand von zwei technologischen Spezialisierungsmaßen identifiziert:

- \(HomeRTA \) misst die technologische Spezialisierung eines Unternehmens im Heimatland im Vergleich zu allen forschungsstarken Unternehmen weltweit. Dazu wird für das jeweilige Unternehmen der Anteil seiner im Heimatland erforschten Patentanmeldungen in einem gegebenen Technologiefeld an allen seinen im Heimatland erforschten Patentanmeldungen ins Verhältnis zum Anteil der in diesem Technologiefeld angemeldeten Patente an allen Patenten weltweit gesetzt.
- \(HostRTA \) misst die technologische Spezialisierung der Zielregion bzw. des Ziellandes im Vergleich zu allen Regionen weltweit. Dieser
Index ist definiert als der Anteil der Patentanmeldungen in einem bestimmten Technologiefeld an allen Patentanmeldungen in dem Zielland relativ zum Anteil der in diesem Technologiefeld angemeldeten Patente an allen Patenten weltweit.

Die Zuordnung der vier Internationalisierungsstrategien erfolgt für die Technologiefelder im Ausland und in den einzelnen Zielregionen nach dem folgenden Schema:

Tabelle 7: Vier Internationalisierungsstrategien der FuE multinationaler Unternehmen

<table>
<thead>
<tr>
<th>Technologische Spezialisierung</th>
<th>...des Ziellandes bzw. der Zielregion</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBA</td>
<td>stark (1) Wissenserweiternd (home-base augmenting HBA)</td>
</tr>
<tr>
<td></td>
<td>HomeRTA > 1</td>
</tr>
<tr>
<td></td>
<td>HostRTA > 1</td>
</tr>
<tr>
<td>HBE</td>
<td>stark (2) Wissensnutzend (home-base exploiting HBE)</td>
</tr>
<tr>
<td></td>
<td>HomeRTA > 1</td>
</tr>
<tr>
<td></td>
<td>HostRTA < 1</td>
</tr>
<tr>
<td>TS</td>
<td>schwach (3) Technologie-suchend (technology-seeking TS)</td>
</tr>
<tr>
<td></td>
<td>HomeRTA < 1</td>
</tr>
<tr>
<td></td>
<td>HostRTA > 1</td>
</tr>
<tr>
<td>MS</td>
<td>schwach (4) Marktorientiert (market-seeking MS)</td>
</tr>
<tr>
<td></td>
<td>HomeRTA < 1</td>
</tr>
<tr>
<td></td>
<td>HostRTA < 1</td>
</tr>
</tbody>
</table>

Quelle: Le Bas & Sierra, 2002.

Die HBA- und die HBE-Strategien beruhen auf der heimischen Stärke der Unternehmen im jeweiligen Forschungsfeld.

In der wissenserweiternden Strategie (HBA) ist das Unternehmen im jeweiligen Forschungs- bzw. Technologiefeld in der Heimat stark und auch das Zielland verfügt über Vorteile. Das Unternehmen versucht damit also die komplementäre Stärke im Ausland zur Erweiterung und Ergänzung des eigenen Wissens zu nutzen.

In der wissensnutzenden Internationalisierungsstrategie (HBE) ist die Forschung im Zielland relativ schwach und das Unternehmen nutzt vor allem die in der Heimat erarbeiteten Vorteile in der Forschung im Zielland. Damit wird im Ausland eher technische Unterstützung der dortigen Produktions- und Vertriebsstandorte des eigenen Unternehmens sowie Anpassung an die lokalen Marktbedingungen geleistet.

5.2 Branchen

Bei der Auslandsforschung deutscher Unternehmen dominiert die wissenserweiternde HBA-Strategie, auf die knapp 50 Prozent der Patente im Ausland entfallen (Tabelle 8). Gut ein Viertel der Aktivitäten sind der wissensnutzenden HBE-Strategie zuzurechnen. Damit finden drei Viertel der FuE-Aktivitäten im Ausland in Forschungsfeldern statt, in denen die Unternehmen in der Heimat im internationalen Vergleich Vorteile haben. Entsprechend wird nur ein Viertel der FuE im Ausland in Feldern durchgeführt, wo dies nicht der Fall ist. Forschung im Ausland beruht also in den meisten Fällen auf der technologischen Stärke am Heimatstandort der Unternehmen. Nur 12 Prozent der Patente im Ausland weisen auf eine technologiesuchende TS-Strategie hin, bei der das Unternehmen im Ausland in Feldern forscht, in denen es in der Heimat relativ schwach ist, das Zielland jedoch über technologische Stärke verfügt. Den geringsten Anteil haben MS-Strategien mit gut 11 Prozent, die weder auf einer
technologischen Stärke des Unternehmens im Heimatland noch auf ei-ner Stärke des Ziellandes fußen.

Tabelle 8: Forschungsstrategien deutscher Unternehmen im Ausland über alle Wirtschaftszweige 2012–2014 (Patentgewichte)

<table>
<thead>
<tr>
<th>ISIC</th>
<th>Wirtschaftszweig</th>
<th>Strategie</th>
<th>Insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HBA</td>
<td>HBE</td>
</tr>
<tr>
<td>01–03</td>
<td>Land- u. Forstwirtschaft, Fischerei</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>10–12</td>
<td>Nahrungsmittel, Getränke, Tabak</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>13–15</td>
<td>Textilien, Bekleidung, Schuhe</td>
<td>0,1%</td>
<td>0,3%</td>
</tr>
<tr>
<td>16–18</td>
<td>Holzwaren, Papier, Druckerzgn.</td>
<td>0,1%</td>
<td>0,0%</td>
</tr>
<tr>
<td>19</td>
<td>Kokerei u. Mineralölverarbeit</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>20</td>
<td>Chemische Erzeugnisse</td>
<td>4,9%</td>
<td>3,3%</td>
</tr>
<tr>
<td>21</td>
<td>Pharmazeutische Erzeugnisse</td>
<td>4,2%</td>
<td>1,7%</td>
</tr>
<tr>
<td>22–23</td>
<td>Gummi-, Kunststoffe, Glas, Keramik</td>
<td>3,7%</td>
<td>1,1%</td>
</tr>
<tr>
<td>24–25</td>
<td>Metallverarbeitung, -erzeugnisse</td>
<td>0,5%</td>
<td>0,5%</td>
</tr>
<tr>
<td>26</td>
<td>DV-gerate, Elektronik, Optik</td>
<td>7,6%</td>
<td>1,6%</td>
</tr>
<tr>
<td>27</td>
<td>Elektrische Ausrüstungen</td>
<td>0,7%</td>
<td>1,8%</td>
</tr>
<tr>
<td>28</td>
<td>Maschinenbau</td>
<td>9,4%</td>
<td>5,7%</td>
</tr>
<tr>
<td>29–30</td>
<td>Fahrzeugbau</td>
<td>10,5%</td>
<td>7,4%</td>
</tr>
<tr>
<td>31–33</td>
<td>Rep., Install. v. Masch. u. Ausrüstg.</td>
<td>1,0%</td>
<td>0,4%</td>
</tr>
<tr>
<td>35</td>
<td>Energieversorgung</td>
<td>0,1%</td>
<td>0,0%</td>
</tr>
<tr>
<td>45–47</td>
<td>Handel; Instandhlg. u. Rep. von Kfz</td>
<td>0,8%</td>
<td>0,5%</td>
</tr>
<tr>
<td>49–53</td>
<td>Verkehr und Lagerei</td>
<td>0,1%</td>
<td>0,0%</td>
</tr>
<tr>
<td>58–60</td>
<td>Verlage, Medien, Rundfunk</td>
<td>2,0%</td>
<td>0,4%</td>
</tr>
<tr>
<td>61</td>
<td>Telekommunikation</td>
<td>0,4%</td>
<td>0,2%</td>
</tr>
<tr>
<td>62–63</td>
<td>IT Dienstleistungen</td>
<td>0,1%</td>
<td>0,0%</td>
</tr>
<tr>
<td>64–66</td>
<td>Finanzen u. Versicherungen</td>
<td>0,1%</td>
<td>0,0%</td>
</tr>
<tr>
<td>69–71</td>
<td>Freiberufliche u. techn. Dienstleistg.</td>
<td>3,0%</td>
<td>1,7%</td>
</tr>
<tr>
<td>72</td>
<td>Forschung und Entwicklung</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td></td>
<td>Insgesamt</td>
<td>49,7%</td>
<td>26,7%</td>
</tr>
</tbody>
</table>

Anmerkung: Anteile >2 Prozent bzw. in der Insgesamt-Spalte >
10 Prozent sind fett markiert.
Quellen: EC-JRC/OECD COR&DIP© database, v.1. 2017, PATSTAT,
eigene Berechnungen.
5.3 Technologiefelder

Die meisten Auslandsaktivitäten deutscher Unternehmen in der Forschung entfallen auf die beiden Technologiebereiche Elektrotechnik und Maschinenbau (63 %) (Tabelle 9). Die Bereiche Instrumente und Chemie haben jeweils nur halb so große Anteile. Während die Unternehmen in der Elektrotechnik alle vier Internationalisierungsmuster zu etwa gleichen Anteilen verfolgen, dominieren im Maschinenbau, in der Chemie und bei den Instrumenten die Strategien, die auf heimatbasierten Wissensvorteilen aufbauen. In allen Bereichen außerhalb der Elektrotechnik liegt der Schwerpunkt klar bei den HBA-Strategien, bei denen Unternehmen am Heimatstandort und die Zielländer auf die jeweiligen Technologien spezialisiert sind. Dort werden also von den Unternehmen die heimischen Vorteile mit technologischen Vorteilen im Ausland kombiniert.

<table>
<thead>
<tr>
<th>Bereich</th>
<th>HBA</th>
<th>HBE</th>
<th>TS</th>
<th>MS</th>
<th>Insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrotechnik</td>
<td>30,6</td>
<td>26,3</td>
<td>18,5</td>
<td>24,6</td>
<td>100 %</td>
</tr>
<tr>
<td>Instrumente</td>
<td>60,6</td>
<td>20,1</td>
<td>14,5</td>
<td>4,8</td>
<td>100 %</td>
</tr>
<tr>
<td>Chemie</td>
<td>57,4</td>
<td>28,6</td>
<td>9,1</td>
<td>4,9</td>
<td>100 %</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>60,0</td>
<td>27,8</td>
<td>6,4</td>
<td>5,9</td>
<td>100 %</td>
</tr>
<tr>
<td>andere</td>
<td>37,2</td>
<td>41,6</td>
<td>16,0</td>
<td>5,1</td>
<td>100 %</td>
</tr>
<tr>
<td>Elektrotechnik</td>
<td>9,6</td>
<td>8,2</td>
<td>5,8</td>
<td>7,7</td>
<td>31,3 %</td>
</tr>
<tr>
<td>Instrumente</td>
<td>10,1</td>
<td>3,3</td>
<td>2,4</td>
<td>0,8</td>
<td>16,6 %</td>
</tr>
<tr>
<td>Chemie</td>
<td>9,8</td>
<td>4,9</td>
<td>1,6</td>
<td>0,8</td>
<td>17,1 %</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>19,0</td>
<td>8,8</td>
<td>2,0</td>
<td>1,9</td>
<td>31,6 %</td>
</tr>
<tr>
<td>andere</td>
<td>1,3</td>
<td>1,4</td>
<td>0,5</td>
<td>0,2</td>
<td>3,4 %</td>
</tr>
<tr>
<td>Insgesamt</td>
<td>49,7</td>
<td>26,7</td>
<td>12,3</td>
<td>11,4</td>
<td>100 %</td>
</tr>
</tbody>
</table>

47 Prozent und damit fast die Hälfte aller Patente im Ausland entfallen auf nur 6 der 35 Technologiefelder: Elektrische Maschinen und Anlagen, Computertechnik, Halbleiter, Messtechnik, Motoren/Pumpen/Turbinen.
sowie Transport (Tabelle 10). Nur in der Computertechnik dominiert dabei die technologiesuchende TS-Strategie. In den anderen in der Auslandforschung starken Feldern dominiert die wissenserweiternde HBA-Strategie. Sie hat auch in weiteren für die Auslandsforschung wichtigen technologischen Feldern wie Medizintechnik, Werkzeugmaschinen und Maschinenelemente ein relativ großes Gewicht. Im Segment Elektrische Maschinen und Anlagen wird von deutschen Unternehmen überwiegend die wissensnutzende HBE-Strategie verfolgt. In diesem Feld mit dem höchsten Anteil an allen Auslandspatenten spielen aber auch die technologiesuchende TS-Strategie und die nicht technologieorientierte MS-Strategie eine relativ gewichtige Rolle.

<table>
<thead>
<tr>
<th>Bereich</th>
<th>Feld</th>
<th>HBA</th>
<th>HBE</th>
<th>TS</th>
<th>MS</th>
<th>Insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrotechnik</td>
<td>Elektr. Masch. u. Anlagen</td>
<td>1,9</td>
<td>6,3</td>
<td>1,9</td>
<td>2,2</td>
<td>12,2 %</td>
</tr>
<tr>
<td></td>
<td>Audiovisuelle Technik</td>
<td>0,0</td>
<td>0,1</td>
<td>0,3</td>
<td>1,7</td>
<td>2,1 %</td>
</tr>
<tr>
<td></td>
<td>Telekommunikationstechnik</td>
<td>0,1</td>
<td>0,2</td>
<td>0,1</td>
<td>0,7</td>
<td>1,2 %</td>
</tr>
<tr>
<td></td>
<td>Digitale Komm.-technik</td>
<td>0,7</td>
<td>0,2</td>
<td>0,4</td>
<td>0,5</td>
<td>1,8 %</td>
</tr>
<tr>
<td></td>
<td>Grundl. Komm.-technik</td>
<td>1,1</td>
<td>0,2</td>
<td>0,0</td>
<td>0,2</td>
<td>1,5 %</td>
</tr>
<tr>
<td></td>
<td>Computertechnik</td>
<td>1,4</td>
<td>0,3</td>
<td>2,5</td>
<td>1,7</td>
<td>6,0 %</td>
</tr>
<tr>
<td></td>
<td>Datenverarbeitung</td>
<td>0,5</td>
<td>0,0</td>
<td>0,3</td>
<td>0,2</td>
<td>1,0 %</td>
</tr>
<tr>
<td></td>
<td>Halbleiter</td>
<td>3,8</td>
<td>0,9</td>
<td>0,2</td>
<td>0,6</td>
<td>5,6 %</td>
</tr>
<tr>
<td>Instrumente</td>
<td>Optik</td>
<td>0,1</td>
<td>0,6</td>
<td>0,3</td>
<td>0,3</td>
<td>1,7 %</td>
</tr>
<tr>
<td></td>
<td>Messtechnik</td>
<td>5,6</td>
<td>1,3</td>
<td>0,4</td>
<td>0,2</td>
<td>7,4 %</td>
</tr>
<tr>
<td></td>
<td>Analyse biolog. Materialien</td>
<td>0,5</td>
<td>0,0</td>
<td>0,1</td>
<td>0,0</td>
<td>0,5 %</td>
</tr>
<tr>
<td></td>
<td>Steuer und Regeltechnik</td>
<td>1,9</td>
<td>0,7</td>
<td>0,6</td>
<td>0,1</td>
<td>3,2 %</td>
</tr>
<tr>
<td></td>
<td>Medizintechnik</td>
<td>2,0</td>
<td>0,8</td>
<td>0,7</td>
<td>0,2</td>
<td>3,7 %</td>
</tr>
<tr>
<td>Chemie</td>
<td>Organische Feinchemie</td>
<td>1,4</td>
<td>0,4</td>
<td>0,1</td>
<td>0,0</td>
<td>1,9 %</td>
</tr>
<tr>
<td></td>
<td>Biotechnologie</td>
<td>1,0</td>
<td>0,1</td>
<td>0,1</td>
<td>0,0</td>
<td>1,2 %</td>
</tr>
<tr>
<td></td>
<td>Pharmazie</td>
<td>1,2</td>
<td>0,1</td>
<td>0,0</td>
<td>0,0</td>
<td>1,3 %</td>
</tr>
<tr>
<td></td>
<td>Kunststoffe</td>
<td>0,5</td>
<td>1,4</td>
<td>0,0</td>
<td>0,1</td>
<td>2,1 %</td>
</tr>
<tr>
<td></td>
<td>Nahrungsmittelchemie</td>
<td>0,4</td>
<td>0,1</td>
<td>0,0</td>
<td>0,0</td>
<td>0,5 %</td>
</tr>
<tr>
<td></td>
<td>Grundstoffchemie</td>
<td>1,6</td>
<td>1,4</td>
<td>0,2</td>
<td>0,0</td>
<td>3,2 %</td>
</tr>
<tr>
<td></td>
<td>Materialien, Metallurgie</td>
<td>0,2</td>
<td>0,6</td>
<td>0,2</td>
<td>0,3</td>
<td>1,3 %</td>
</tr>
</tbody>
</table>
Anmerkung: Anteile ≥ 2 Prozent bzw. in der Insgesamt-Spalte > 5 Prozent sind fett markiert.

5.4 Zielländer

Die deutschen Unternehmen forschen im Ausland am meisten in den USA, als wichtige Forschungsstandorte folgen Österreich und Frankreich. Bereits an viert er Stelle der Rangfolge steht China, noch vor Großbritannien (Tabelle 11). Sowohl Indien, als auch osteuropäische Länder, an denen zuweilen auch wichtige Forschungsstandorte deutscher Unternehmen vermutet werden, haben nur sehr geringe Anteile an den Patenten. So steht Indien mit einem Anteil von 1,2 Prozent erst auf Rang 16. Das erste osteuropäische Land in der Rangfolge ist Ungarn, das mit einem Anteil von 0,8 Prozent auf Platz 19 der Auslandsforschungsstandorte landet.
Tabelle 11: Verteilung der Erfinder*innen deutscher Unternehmen im Ausland nach Zielländern und Strategien

<table>
<thead>
<tr>
<th>Bereich</th>
<th>HBA</th>
<th>HBE</th>
<th>TS</th>
<th>MS</th>
<th>Insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>30,5 %</td>
<td>31,9 %</td>
<td>41,3 %</td>
<td>31,2 %</td>
<td>32,3 %</td>
</tr>
<tr>
<td>Österreich</td>
<td>14,1 %</td>
<td>7,2 %</td>
<td>14,6 %</td>
<td>19,0 %</td>
<td>12,9 %</td>
</tr>
<tr>
<td>Frankreich</td>
<td>8,4 %</td>
<td>6,1 %</td>
<td>2,3 %</td>
<td>6,4 %</td>
<td>6,8 %</td>
</tr>
<tr>
<td>China</td>
<td>1,4 %</td>
<td>16,8 %</td>
<td>2,2 %</td>
<td>2,3 %</td>
<td>5,7 %</td>
</tr>
<tr>
<td>Großbritannien</td>
<td>5,1 %</td>
<td>4,3 %</td>
<td>2,3 %</td>
<td>9,6 %</td>
<td>5,1 %</td>
</tr>
<tr>
<td>Schweden</td>
<td>5,2 %</td>
<td>4,2 %</td>
<td>0,7 %</td>
<td>2,7 %</td>
<td>4,1 %</td>
</tr>
<tr>
<td>Italien</td>
<td>5,4 %</td>
<td>1,6 %</td>
<td>2,7 %</td>
<td>5,2 %</td>
<td>4,0 %</td>
</tr>
<tr>
<td>Schweiz</td>
<td>3,5 %</td>
<td>3,0 %</td>
<td>1,9 %</td>
<td>3,1 %</td>
<td>3,1 %</td>
</tr>
<tr>
<td>Dänemark</td>
<td>3,1 %</td>
<td>2,5 %</td>
<td>5,1 %</td>
<td>2,4 %</td>
<td>3,1 %</td>
</tr>
<tr>
<td>Japan</td>
<td>2,4 %</td>
<td>5,2 %</td>
<td>2,2 %</td>
<td>0,8 %</td>
<td>2,9 %</td>
</tr>
<tr>
<td>Südkorea</td>
<td>1,5 %</td>
<td>3,0 %</td>
<td>8,2 %</td>
<td>2,1 %</td>
<td>2,8 %</td>
</tr>
<tr>
<td>Spanien</td>
<td>2,6 %</td>
<td>2,0 %</td>
<td>0,7 %</td>
<td>1,2 %</td>
<td>2,1 %</td>
</tr>
<tr>
<td>Niederlande</td>
<td>1,9 %</td>
<td>2,6 %</td>
<td>1,1 %</td>
<td>2,1 %</td>
<td>2,0 %</td>
</tr>
<tr>
<td>Singapur</td>
<td>1,0 %</td>
<td>0,4 %</td>
<td>5,2 %</td>
<td>1,7 %</td>
<td>1,4 %</td>
</tr>
<tr>
<td>restliche Länder</td>
<td>13,9 %</td>
<td>9,3 %</td>
<td>9,6 %</td>
<td>10,3 %</td>
<td>11,7 %</td>
</tr>
<tr>
<td>Insgesamt</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Anmerkung: Überdurchschnittliche Anteile einer Strategie im jeweiligen Zielland sind fett markiert.

Abbildung 10: Erfinder*innen in den wichtigsten Zielländern deutscher Unternehmen nach Internationalisierungsstrategien 2012–2014

Für die vier wichtigsten Auslandsforschungsstandorte, auf die zusammen fast 60 Prozent der Patente im Ausland entfallen, wird in den folgenden Abbildungen die Verteilung der gewichteten Patente auf Technologiefelder und Strategien im Zeitraum 2012–2014 illustriert.
In den USA forschen deutsche Unternehmen in vielen Technologiefeldern wobei HBA-Strategien das Bild bestimmen (Abbildung 11). Technologiesuchende Strategien sind dort insbesondere in der Computerotechnik und in der Medizintechnik zu finden, in denen die USA zu den weltweit führenden Forschungsstandorten zählen. Auf die größeren Felder Elektrische Maschinen und Anlagen sowie Transport sind die USA nicht spezialisiert und deutsche Unternehmen verfolgen hier vorwiegend die HBE-Strategie.
Abbildung 11: Erfinder*innen deutscher Unternehmen in den USA nach Technologiefeldern und Internationalisierungsstrategien 2012–2014 (Patentgewichte)

In ihrem zweitwichtigsten Auslandstandort Österreich sind deutsche Unternehmen in wenigen Technologiefeldern besonders aktiv. Ihre Forschung konzentriert sich dort auf die Felder Halbleiter, Messtechnik und auf Elektrische Maschinen und Anlagen (Abbildung 12). Im zuletzt genannten Feld verfolgen die dort forschenden Unternehmen überwiegend technologiesuchende Strategien.
Abbildung 12: Erfinder*innen deutscher Unternehmen in Österreich nach Technologiefeldern und Internationalisierungsstrategien 2012–2014 (Patentgewichte)

<table>
<thead>
<tr>
<th>Technologiefeld</th>
<th>Patentgewichte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrische Maschinen und Anlagen</td>
<td></td>
</tr>
<tr>
<td>Audiovisuelle Technik</td>
<td></td>
</tr>
<tr>
<td>Telekommunikationstechnik</td>
<td></td>
</tr>
<tr>
<td>Digitale Kommunikationstechnik</td>
<td></td>
</tr>
<tr>
<td>Grundlegende Kommunikationstechnik</td>
<td></td>
</tr>
<tr>
<td>Computertechnik</td>
<td></td>
</tr>
<tr>
<td>Datenverarbeitung</td>
<td></td>
</tr>
<tr>
<td>Halbleiter</td>
<td></td>
</tr>
<tr>
<td>Optik</td>
<td></td>
</tr>
<tr>
<td>Messtechnik</td>
<td></td>
</tr>
<tr>
<td>Analyse von biologischen Materialien</td>
<td></td>
</tr>
<tr>
<td>Steuer und Regeltechnik</td>
<td></td>
</tr>
<tr>
<td>Medizintechnik</td>
<td></td>
</tr>
<tr>
<td>Organische Feinchemie</td>
<td></td>
</tr>
<tr>
<td>Biotechnologie</td>
<td></td>
</tr>
<tr>
<td>Pharmazie</td>
<td></td>
</tr>
<tr>
<td>Kunststoffe, makromolekulare Chemie</td>
<td></td>
</tr>
<tr>
<td>Nahrungsmittelchemie</td>
<td></td>
</tr>
<tr>
<td>Grundstoffchemie</td>
<td></td>
</tr>
<tr>
<td>Materialien, Metallurgie</td>
<td></td>
</tr>
<tr>
<td>Oberflächen, Beschichtungen</td>
<td></td>
</tr>
<tr>
<td>Mikrostruktur- und Nanotechnologie</td>
<td></td>
</tr>
<tr>
<td>Chemische Verfahrenstechnik</td>
<td></td>
</tr>
<tr>
<td>Umwelttechnik</td>
<td></td>
</tr>
<tr>
<td>Fördertechnik</td>
<td></td>
</tr>
<tr>
<td>Werkzeugmaschinen</td>
<td></td>
</tr>
<tr>
<td>Motoren, Pumpen, Turbinen</td>
<td></td>
</tr>
<tr>
<td>Textil und Papiermaschinen</td>
<td></td>
</tr>
<tr>
<td>Andere Spezialmaschinen</td>
<td></td>
</tr>
<tr>
<td>Thermische Prozesse und Apparate</td>
<td></td>
</tr>
<tr>
<td>Maschinenlemente</td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td></td>
</tr>
<tr>
<td>Möbel, Spielzeug</td>
<td></td>
</tr>
<tr>
<td>Andere Konsumgüter</td>
<td></td>
</tr>
<tr>
<td>Bauwesen</td>
<td></td>
</tr>
</tbody>
</table>

Am großen Forschungsstandort Frankreich forschen deutsche Unternehmen in vielen Technologiefeldern (Abbildung 13). Dabei dominieren die wissensverweiternden HBA-Strategien. Technologiesuchende Strategien werden kaum verfolgt.
Abbildung 13: Erfinder*innen deutscher Unternehmen in Frankreich nach Technologiefeldern und Internationalisierungsstrategien 2012–2014 (Patentgewichte)

Abbildung 14: Erfinder*innen deutscher Unternehmen in China nach Technologiefeldern und Internationalisierungsstrategien 2012–2014 (Patentgewichte)

5.5 Sechs patentstärkste Unternehmen

Tabelle 12: Internationalisierungsstrategien der sechs patentstärksten deutschen Unternehmen 2012–2014

<table>
<thead>
<tr>
<th>Patentgewichte insgesamt</th>
<th>davon im Ausland</th>
<th>Strategien</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HBA</td>
</tr>
<tr>
<td>ROBERT BOSCH</td>
<td>4662</td>
<td>23,8 %</td>
</tr>
<tr>
<td>SIEMENS</td>
<td>3156</td>
<td>39,3 %</td>
</tr>
<tr>
<td>INFINEON TECHNOLOGIES</td>
<td>1965</td>
<td>44,2 %</td>
</tr>
<tr>
<td>VOLKSWAGEN</td>
<td>1958</td>
<td>19,3 %</td>
</tr>
<tr>
<td>CONTINENTAL</td>
<td>1298</td>
<td>36,4 %</td>
</tr>
<tr>
<td>BASF</td>
<td>1138</td>
<td>39,0 %</td>
</tr>
</tbody>
</table>

Technologiesuchende Internationalisierungsstrategien verfolgen die führenden deutschen Unternehmen vor allem in den IuK-Technologien, BASF auch im Feld Optik (Abbildung 20). Dabei handelt es sich oft um Querschnittstechnologien außerhalb der Kernkompetenz der Unternehmen, die aber für ihre Innovationen eine große Bedeutung haben.

Abbildung 16: Erfinder*innen von Siemens im Ausland nach Internationalisierungsstrategien 2012–2014 (Patentgewichte)

5.6 Vergleich mit Ergebnissen der bisherigen Literatur

Tabelle 13: Patentanteile der vier Internationalisierungsstrategien der Forschung deutscher Unternehmen in der Literatur

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Unternehmen</td>
<td>22</td>
<td>42</td>
<td>87</td>
<td>104</td>
</tr>
<tr>
<td>HBA</td>
<td>34,8 %</td>
<td>54,6 %</td>
<td>37,6 %</td>
<td>41,2 %</td>
</tr>
<tr>
<td>HBE</td>
<td>39,4 %</td>
<td>25,3 %</td>
<td>41,5 %</td>
<td>36,8 %</td>
</tr>
<tr>
<td>TS</td>
<td>7,6 %</td>
<td>9,2 %</td>
<td>12,0 %</td>
<td>12,9 %</td>
</tr>
<tr>
<td>MS</td>
<td>18,2 %</td>
<td>10,9 %</td>
<td>8,9 %</td>
<td>9,1 %</td>
</tr>
<tr>
<td>HBA+HBE</td>
<td>74,2 %</td>
<td>79,9 %</td>
<td>79,1 %</td>
<td>78,0 %</td>
</tr>
</tbody>
</table>

Quellen: Siehe Literatur und eigene Berechnungen.

Tabelle 14: Patentanteile ausgewählter deutscher Unternehmen im Ausland

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ROBERT BOSCH</td>
<td>23,8 %</td>
<td>14 %</td>
</tr>
<tr>
<td>SIEMENS</td>
<td>39,3 %</td>
<td>10 %</td>
</tr>
<tr>
<td>BASF</td>
<td>39,0 %</td>
<td>16 %</td>
</tr>
</tbody>
</table>

Quellen: Siehe Literatur und eigene Berechnungen.
Literatur

Anhang

Tabelle 15: WIPO-Technologiebereiche und -felder

<table>
<thead>
<tr>
<th>Bereich</th>
<th>Feld</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrotechnik</td>
<td>Elektrische Maschinen und Anlagen</td>
</tr>
<tr>
<td></td>
<td>Audiovisuelle Technik</td>
</tr>
<tr>
<td></td>
<td>Telekommunikationstechnik</td>
</tr>
<tr>
<td></td>
<td>Digitale Kommunikationstechnik</td>
</tr>
<tr>
<td></td>
<td>Grundlegende Kommunikationstechnik</td>
</tr>
<tr>
<td></td>
<td>Computertechnik</td>
</tr>
<tr>
<td></td>
<td>Datenverarbeitung</td>
</tr>
<tr>
<td></td>
<td>Halbleiter</td>
</tr>
<tr>
<td>Instrumente</td>
<td>Optik</td>
</tr>
<tr>
<td></td>
<td>Messtechnik</td>
</tr>
<tr>
<td></td>
<td>Analyse biologischer Materialien</td>
</tr>
<tr>
<td></td>
<td>Steuer und Regeltechnik</td>
</tr>
<tr>
<td></td>
<td>Medizintechnik</td>
</tr>
<tr>
<td>Chemie</td>
<td>Organische Feinchemie</td>
</tr>
<tr>
<td></td>
<td>Biotechnologie</td>
</tr>
<tr>
<td></td>
<td>Pharmazie</td>
</tr>
<tr>
<td></td>
<td>Kunststoffe</td>
</tr>
<tr>
<td></td>
<td>Nahrungsmittelchemie</td>
</tr>
<tr>
<td></td>
<td>Grundstoffchemie</td>
</tr>
<tr>
<td></td>
<td>Materialien, Metallurgie</td>
</tr>
<tr>
<td></td>
<td>Oberflächen, Beschichtungen</td>
</tr>
<tr>
<td></td>
<td>Mikrostruktur- und Nanotechnologie</td>
</tr>
<tr>
<td></td>
<td>Chemische Verfahrenstechnik</td>
</tr>
<tr>
<td></td>
<td>Umwelttechnik</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>Fördertechnik</td>
</tr>
<tr>
<td></td>
<td>Werkzeugmaschinen</td>
</tr>
<tr>
<td></td>
<td>Motoren, Pumpen, Turbinen</td>
</tr>
<tr>
<td></td>
<td>Textil- und Papiermaschinen</td>
</tr>
<tr>
<td></td>
<td>Andere Spezialmaschinen</td>
</tr>
<tr>
<td></td>
<td>Thermische Prozesse und Apparate</td>
</tr>
<tr>
<td></td>
<td>Maschinenelemente</td>
</tr>
<tr>
<td></td>
<td>Transport</td>
</tr>
<tr>
<td>Andere</td>
<td>Möbel, Spielzeug</td>
</tr>
<tr>
<td></td>
<td>Andere Konsumgüter</td>
</tr>
<tr>
<td></td>
<td>Bauwesen</td>
</tr>
</tbody>
</table>

Quelle: Schmoch (2008).
Tabelle 16: Berechnung der Gewichte nach fraktionierter Zählweise am Beispiel der Erfindung 9225914

<table>
<thead>
<tr>
<th>Patentfamilie (In-padoc)</th>
<th>Patentanmeldungs-ID</th>
<th>Unternehmen</th>
<th>Herkunft</th>
<th>WIPO-Klasse</th>
<th>Name der Erfinder*in</th>
<th>Land der Erfinder*in</th>
<th>fraktioniertes Gewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>9225914</td>
<td>380717824</td>
<td>Toshiba</td>
<td>Japan</td>
<td>25</td>
<td>Chen</td>
<td>USA</td>
<td>0,0278</td>
</tr>
<tr>
<td>9225914</td>
<td>380717824</td>
<td>Toshiba</td>
<td>Japan</td>
<td>25</td>
<td>Cresswell</td>
<td>USA</td>
<td>0,0278</td>
</tr>
<tr>
<td>9225914</td>
<td>380717824</td>
<td>Toshiba</td>
<td>Japan</td>
<td>25</td>
<td>Graaff</td>
<td>Deutschland</td>
<td>0,0278</td>
</tr>
<tr>
<td>9225914</td>
<td>380717824</td>
<td>United Technologies</td>
<td>USA</td>
<td>25</td>
<td>Chen</td>
<td>USA</td>
<td>0,0278</td>
</tr>
<tr>
<td>9225914</td>
<td>380717824</td>
<td>United Technologies</td>
<td>USA</td>
<td>25</td>
<td>Cresswell</td>
<td>USA</td>
<td>0,0278</td>
</tr>
<tr>
<td>9225914</td>
<td>380717824</td>
<td>United Technologies</td>
<td>USA</td>
<td>25</td>
<td>Graaff</td>
<td>Deutschland</td>
<td>0,0278</td>
</tr>
<tr>
<td>9225914</td>
<td>380717824</td>
<td>Toshiba</td>
<td>Japan</td>
<td>34</td>
<td>Chen</td>
<td>USA</td>
<td>0,0278</td>
</tr>
<tr>
<td>9225914</td>
<td>380717824</td>
<td>Toshiba</td>
<td>Japan</td>
<td>34</td>
<td>Cresswell</td>
<td>USA</td>
<td>0,0278</td>
</tr>
<tr>
<td>9225914</td>
<td>380717824</td>
<td>Toshiba</td>
<td>Japan</td>
<td>34</td>
<td>Graaff</td>
<td>Deutschland</td>
<td>0,0278</td>
</tr>
<tr>
<td>9225914</td>
<td>380717824</td>
<td>United Technologies</td>
<td>USA</td>
<td>34</td>
<td>Chen</td>
<td>USA</td>
<td>0,0278</td>
</tr>
<tr>
<td>9225914</td>
<td>380717824</td>
<td>United Technologies</td>
<td>USA</td>
<td>34</td>
<td>Cresswell</td>
<td>USA</td>
<td>0,0278</td>
</tr>
<tr>
<td>9225914</td>
<td>380717824</td>
<td>United Technologies</td>
<td>USA</td>
<td>34</td>
<td>Graaff</td>
<td>Deutschland</td>
<td>0,0278</td>
</tr>
<tr>
<td>9225914</td>
<td>380717824</td>
<td>Toshiba</td>
<td>Japan</td>
<td>35</td>
<td>Chen</td>
<td>USA</td>
<td>0,0278</td>
</tr>
<tr>
<td>9225914</td>
<td>380717824</td>
<td>Toshiba</td>
<td>Japan</td>
<td>35</td>
<td>Cresswell</td>
<td>USA</td>
<td>0,0278</td>
</tr>
<tr>
<td>9225914</td>
<td>380717824</td>
<td>Toshiba</td>
<td>Japan</td>
<td>35</td>
<td>Graaff</td>
<td>Deutschland</td>
<td>0,0278</td>
</tr>
<tr>
<td>9225914</td>
<td>380717824</td>
<td>United Technologies</td>
<td>USA</td>
<td>35</td>
<td>Chen</td>
<td>USA</td>
<td>0,0278</td>
</tr>
<tr>
<td>9225914</td>
<td>380717824</td>
<td>United Technologies</td>
<td>USA</td>
<td>35</td>
<td>Cresswell</td>
<td>USA</td>
<td>0,0278</td>
</tr>
<tr>
<td>9225914</td>
<td>380717824</td>
<td>United Technologies</td>
<td>USA</td>
<td>35</td>
<td>Graaff</td>
<td>Deutschland</td>
<td>0,0278</td>
</tr>
<tr>
<td>9225914</td>
<td>423823789</td>
<td>Toshiba</td>
<td>Japan</td>
<td>25</td>
<td>Chen</td>
<td>USA</td>
<td>0,0278</td>
</tr>
<tr>
<td>9225914</td>
<td>423823789</td>
<td>Toshiba</td>
<td>Japan</td>
<td>25</td>
<td>Cresswell</td>
<td>USA</td>
<td>0,0278</td>
</tr>
<tr>
<td>Nummer</td>
<td>Inpadoc-ID</td>
<td>Erfinder</td>
<td>Heimatland</td>
<td>WIPO-Technologieklasse</td>
<td>Erfinderland</td>
<td>Prioritäten</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>9225914</td>
<td>423823789</td>
<td>Toshiba</td>
<td>Japan</td>
<td>25</td>
<td>Graaff</td>
<td>Deutschland</td>
<td></td>
</tr>
<tr>
<td>9225914</td>
<td>423823789</td>
<td>United Technologies</td>
<td>USA</td>
<td>25</td>
<td>Chen</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>9225914</td>
<td>423823789</td>
<td>United Technologies</td>
<td>USA</td>
<td>25</td>
<td>Cresswell</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>9225914</td>
<td>423823789</td>
<td>United Technologies</td>
<td>USA</td>
<td>25</td>
<td>Graaff</td>
<td>Deutschland</td>
<td></td>
</tr>
<tr>
<td>9225914</td>
<td>423823789</td>
<td>Toshiba</td>
<td>Japan</td>
<td>34</td>
<td>Chen</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>9225914</td>
<td>423823789</td>
<td>Toshiba</td>
<td>Japan</td>
<td>34</td>
<td>Cresswell</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>9225914</td>
<td>423823789</td>
<td>Toshiba</td>
<td>Japan</td>
<td>34</td>
<td>Graaff</td>
<td>Deutschland</td>
<td></td>
</tr>
<tr>
<td>9225914</td>
<td>423823789</td>
<td>United Technologies</td>
<td>USA</td>
<td>34</td>
<td>Chen</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>9225914</td>
<td>423823789</td>
<td>United Technologies</td>
<td>USA</td>
<td>34</td>
<td>Cresswell</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>9225914</td>
<td>423823789</td>
<td>United Technologies</td>
<td>USA</td>
<td>34</td>
<td>Graaff</td>
<td>Deutschland</td>
<td></td>
</tr>
<tr>
<td>9225914</td>
<td>423823789</td>
<td>Toshiba</td>
<td>Japan</td>
<td>35</td>
<td>Chen</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>9225914</td>
<td>423823789</td>
<td>Toshiba</td>
<td>Japan</td>
<td>35</td>
<td>Cresswell</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>9225914</td>
<td>423823789</td>
<td>Toshiba</td>
<td>Japan</td>
<td>35</td>
<td>Graaff</td>
<td>Deutschland</td>
<td></td>
</tr>
<tr>
<td>9225914</td>
<td>423823789</td>
<td>United Technologies</td>
<td>USA</td>
<td>35</td>
<td>Chen</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>9225914</td>
<td>423823789</td>
<td>United Technologies</td>
<td>USA</td>
<td>35</td>
<td>Cresswell</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>9225914</td>
<td>423823789</td>
<td>United Technologies</td>
<td>USA</td>
<td>35</td>
<td>Graaff</td>
<td>Deutschland</td>
<td></td>
</tr>
</tbody>
</table>

In Tabelle 16 wird am Beispiel der Erfindung mit Inpadoc-Nummer 9225914 dargestellt, wie diese mit Hilfe der fraktionierten Zählweise den Kategorien Patentanmeldung, Heimatland, WIPO-Technologieklasse und Erfinderland berechnet wird. Es werden nur Informationen der Prioritätsanmeldung, der ältesten vollständig im Datensatz vorhandenen Patentanmeldung der Patentfamilie, berücksichtigt. Dazu zählen im Beispiel:
- Zwei Patentanmeldungen (Patentanmeldungs-ID 380717824 und 423823789),
zwei Anmelderunternehmen: Toshiba (Japan) und United Technologies (USA),
drei WIPO-Klassen (25, 34 und 35) sowie
drei Erfinder*innen aus zwei Ländern (USA und Deutschland).

Tabelle 16 zeigt in der letzten Spalte das fraktionierte Gewicht jeder einzelnen Information auf, wenn die Erfindung nach allen Dimensionen differenziert wird; jede Zeile erhält im Beispiel ein fraktioniertes Gewicht von 0,027778. Deren Summe addiert sich über die gesamte Erfindung (Patentfamilie) zu 1 auf. Möchte man nun nachvollziehen wie Erfindung 9225914 einzelnen Dimensionen zugerechnet wird, müssen die Gewichte über die entsprechenden Dimensionen aggregiert werden. Tabelle 17 zeigt, wie die Erfindung 9225914 den Ländern der Unternehmer- und Erfinder*innen zugerechnet wird.

Tabelle 17: Zuordnung der Gewichte von Erfindung 9225914 nach Anmelder- und Land der Erfinder*in

<table>
<thead>
<tr>
<th>Unternehmensland</th>
<th>Erfindungen</th>
<th>davon erfunden in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>USA</td>
</tr>
<tr>
<td>Japan</td>
<td>0,5</td>
<td>67 %</td>
</tr>
<tr>
<td>USA</td>
<td>0,5</td>
<td>67 %</td>
</tr>
</tbody>
</table>

Tabelle 18: Erfindungen deutscher Unternehmen im In- und Ausland nach WIPO-Technologieklassen 2012–2014

<table>
<thead>
<tr>
<th>WIPO-Technologieklasse</th>
<th>Weltweit</th>
<th>Inland</th>
<th>Ausland</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Elektr. Maschinen u. Anlagen</td>
<td>10,2 %</td>
<td>9,4 %</td>
<td>12,2 %</td>
</tr>
<tr>
<td>2. Audiovisuelle Technik</td>
<td>1,9 %</td>
<td>1,8 %</td>
<td>2,1 %</td>
</tr>
<tr>
<td>3. Telekommunikationstechnik</td>
<td>1,0 %</td>
<td>0,9 %</td>
<td>1,2 %</td>
</tr>
<tr>
<td>4. Digitale Kommunikationstechnik</td>
<td>1,8 %</td>
<td>1,8 %</td>
<td>1,8 %</td>
</tr>
<tr>
<td>5. Grundl. Kommunikationstechnik</td>
<td>1,0 %</td>
<td>0,8 %</td>
<td>1,5 %</td>
</tr>
<tr>
<td>6. Computertechnik</td>
<td>4,7 %</td>
<td>4,3 %</td>
<td>6,0 %</td>
</tr>
<tr>
<td>7. Datenverarbeitung</td>
<td>0,5 %</td>
<td>0,4 %</td>
<td>1,0 %</td>
</tr>
<tr>
<td>8. Halbleiter</td>
<td>5,3 %</td>
<td>5,2 %</td>
<td>5,6 %</td>
</tr>
<tr>
<td>9. Optik</td>
<td>2,1 %</td>
<td>2,2 %</td>
<td>1,7 %</td>
</tr>
<tr>
<td>10. Messtechnik</td>
<td>7,5 %</td>
<td>7,6 %</td>
<td>7,4 %</td>
</tr>
<tr>
<td>11. Analyse von biolog. Materialien</td>
<td>0,4 %</td>
<td>0,3 %</td>
<td>0,6 %</td>
</tr>
<tr>
<td>12. Steuer und Regeltechnik</td>
<td>2,8 %</td>
<td>2,7 %</td>
<td>3,2 %</td>
</tr>
<tr>
<td>13. Medizintechnik</td>
<td>3,9 %</td>
<td>4,0 %</td>
<td>3,7 %</td>
</tr>
<tr>
<td>14. Organische Feinchemie</td>
<td>3,0 %</td>
<td>3,3 %</td>
<td>1,9 %</td>
</tr>
<tr>
<td>15. Biotechnologie</td>
<td>0,8 %</td>
<td>0,6 %</td>
<td>1,2 %</td>
</tr>
<tr>
<td>16. Pharmazie</td>
<td>1,2 %</td>
<td>1,1 %</td>
<td>1,4 %</td>
</tr>
<tr>
<td>17. Kunststoffe, makromol. Chemie</td>
<td>1,9 %</td>
<td>1,8 %</td>
<td>2,1 %</td>
</tr>
<tr>
<td>18. Nahrungsmittelchemie</td>
<td>0,4 %</td>
<td>0,3 %</td>
<td>0,5 %</td>
</tr>
<tr>
<td>19. Grundstoffchemie</td>
<td>2,9 %</td>
<td>2,8 %</td>
<td>3,2 %</td>
</tr>
<tr>
<td>20. Materialien, Metallurgie</td>
<td>1,5 %</td>
<td>1,5 %</td>
<td>1,3 %</td>
</tr>
<tr>
<td>21. Oberflächen, Beschichtungen</td>
<td>1,5 %</td>
<td>1,5 %</td>
<td>1,4 %</td>
</tr>
<tr>
<td>22. Mikrostruktur- u. Nanotechnolog.</td>
<td>0,6 %</td>
<td>0,6 %</td>
<td>0,5 %</td>
</tr>
<tr>
<td>23. Chemische Verfahrenstechnik</td>
<td>2,2 %</td>
<td>2,2 %</td>
<td>2,0 %</td>
</tr>
<tr>
<td>24. Umwelttechnik</td>
<td>1,6 %</td>
<td>1,6 %</td>
<td>1,5 %</td>
</tr>
<tr>
<td>25. Fördertechnik</td>
<td>2,9 %</td>
<td>3,4 %</td>
<td>1,7 %</td>
</tr>
<tr>
<td>26. Werkzeugmaschinen</td>
<td>3,0 %</td>
<td>2,7 %</td>
<td>3,5 %</td>
</tr>
<tr>
<td>27. Motoren, Pumpen, Turbinen</td>
<td>7,0 %</td>
<td>6,8 %</td>
<td>7,6 %</td>
</tr>
<tr>
<td>28. Textil und Papiermaschinen</td>
<td>1,1 %</td>
<td>1,2 %</td>
<td>0,8 %</td>
</tr>
<tr>
<td>29. Andere Spezialmaschinen</td>
<td>3,1 %</td>
<td>3,3 %</td>
<td>2,4 %</td>
</tr>
<tr>
<td>30. Therm. Prozesse u. Apparate</td>
<td>2,5 %</td>
<td>2,4 %</td>
<td>2,7 %</td>
</tr>
<tr>
<td>31. Maschinenbauteile</td>
<td>5,9 %</td>
<td>6,2 %</td>
<td>4,8 %</td>
</tr>
<tr>
<td>32. Transport</td>
<td>10,7 %</td>
<td>11,6 %</td>
<td>8,2 %</td>
</tr>
<tr>
<td>33. Möbel, Spielzeug</td>
<td>0,8 %</td>
<td>0,8 %</td>
<td>0,9 %</td>
</tr>
<tr>
<td>34. Andere Konsumgüter</td>
<td>2,2 %</td>
<td>2,5 %</td>
<td>1,5 %</td>
</tr>
<tr>
<td>35. Bauwesen</td>
<td>0,8 %</td>
<td>0,7 %</td>
<td>1,0 %</td>
</tr>
<tr>
<td>Insgesamt</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unternehmen</th>
<th>Patente weltweit</th>
<th>Anteil im Ausland</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROBERT BOSCH</td>
<td>4.662,2</td>
<td>23,8 %</td>
</tr>
<tr>
<td>SIEMENS</td>
<td>3.156,3</td>
<td>39,3 %</td>
</tr>
<tr>
<td>INFINEON TECHNOLOGIES</td>
<td>1.965,0</td>
<td>44,3 %</td>
</tr>
<tr>
<td>VOLKSWAGEN</td>
<td>1.958,2</td>
<td>19,3 %</td>
</tr>
<tr>
<td>CONTINENTAL</td>
<td>1.298,0</td>
<td>36,4 %</td>
</tr>
<tr>
<td>BASF</td>
<td>1.137,8</td>
<td>39,0 %</td>
</tr>
<tr>
<td>ZF</td>
<td>715,8</td>
<td>16,9 %</td>
</tr>
<tr>
<td>OSRAM LICHT</td>
<td>712,0</td>
<td>28,7 %</td>
</tr>
<tr>
<td>BAYER</td>
<td>706,2</td>
<td>36,0 %</td>
</tr>
<tr>
<td>CARL ZEISS</td>
<td>644,5</td>
<td>14,0 %</td>
</tr>
<tr>
<td>BMW</td>
<td>568,5</td>
<td>3,1 %</td>
</tr>
<tr>
<td>HENKEL</td>
<td>455,5</td>
<td>31,2 %</td>
</tr>
<tr>
<td>KRONES</td>
<td>452,5</td>
<td>0,4 %</td>
</tr>
<tr>
<td>MAHLE</td>
<td>435,0</td>
<td>19,2 %</td>
</tr>
<tr>
<td>EVONIK INDUSTRIES</td>
<td>429,0</td>
<td>11,6 %</td>
</tr>
<tr>
<td>THYSSENKRUPP</td>
<td>418,7</td>
<td>18,1 %</td>
</tr>
<tr>
<td>SAP</td>
<td>288,0</td>
<td>57,5 %</td>
</tr>
<tr>
<td>MERCK DE</td>
<td>257,8</td>
<td>54,7 %</td>
</tr>
<tr>
<td>LINDE</td>
<td>256,7</td>
<td>33,6 %</td>
</tr>
<tr>
<td>CLAAS</td>
<td>240,0</td>
<td>17,5 %</td>
</tr>
<tr>
<td>KNORR-BREMSE</td>
<td>239,0</td>
<td>39,0 %</td>
</tr>
<tr>
<td>GIESECKE & DEVRIENT</td>
<td>236,0</td>
<td>4,4 %</td>
</tr>
<tr>
<td>B BRAUN MELSUNGEN</td>
<td>231,0</td>
<td>18,2 %</td>
</tr>
<tr>
<td>MTU AERO ENGINES</td>
<td>223,0</td>
<td>2,5 %</td>
</tr>
<tr>
<td>HERAEUS</td>
<td>198,0</td>
<td>33,9 %</td>
</tr>
<tr>
<td>BOEHRINGER INGELHEIM</td>
<td>197,0</td>
<td>40,8 %</td>
</tr>
<tr>
<td>RHEINMETALL</td>
<td>188,5</td>
<td>12,4 %</td>
</tr>
<tr>
<td>DAIMLER</td>
<td>184,0</td>
<td>13,3 %</td>
</tr>
<tr>
<td>KORBER</td>
<td>183,0</td>
<td>12,4 %</td>
</tr>
<tr>
<td>SICK</td>
<td>180,0</td>
<td>6,4 %</td>
</tr>
<tr>
<td>FRESENIUS</td>
<td>165,5</td>
<td>41,4 %</td>
</tr>
<tr>
<td>PHOENIX CONTACT</td>
<td>165,0</td>
<td>2,5 %</td>
</tr>
<tr>
<td>VOITH</td>
<td>158,5</td>
<td>25,6 %</td>
</tr>
<tr>
<td>HELLA</td>
<td>156,5</td>
<td>4,3 %</td>
</tr>
<tr>
<td>SALZGITTER</td>
<td>155,5</td>
<td>2,6 %</td>
</tr>
<tr>
<td>DEUTSCHE TELEKOM</td>
<td>155,0</td>
<td>34,5 %</td>
</tr>
<tr>
<td>WACKER CHEMIE</td>
<td>153,5</td>
<td>15,2 %</td>
</tr>
<tr>
<td>Unternehmen</td>
<td>Gewichtete Patentanmeldungen</td>
<td>Gewichtung</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>BEIERSDORF</td>
<td>151,0</td>
<td>8,1 %</td>
</tr>
<tr>
<td>KARL STORZ</td>
<td>140,0</td>
<td>33,9 %</td>
</tr>
<tr>
<td>HEIDELBERGER DRUCKMASCHINEN</td>
<td>137,5</td>
<td>3,1 %</td>
</tr>
<tr>
<td>DRAGERWERK</td>
<td>135,5</td>
<td>17,9 %</td>
</tr>
<tr>
<td>TRUMPF</td>
<td>133,5</td>
<td>27,9 %</td>
</tr>
<tr>
<td>GEA</td>
<td>120,0</td>
<td>40,1 %</td>
</tr>
<tr>
<td>DURR</td>
<td>115,0</td>
<td>5,1 %</td>
</tr>
<tr>
<td>LANXESS</td>
<td>109,0</td>
<td>24,1 %</td>
</tr>
<tr>
<td>FREUDENBERG</td>
<td>102,8</td>
<td>29,8 %</td>
</tr>
<tr>
<td>KION</td>
<td>100,5</td>
<td>6,7 %</td>
</tr>
</tbody>
</table>

*Unternehmen mit mindestens 100 gewichteten Patentanmeldungen weltweit.

<table>
<thead>
<tr>
<th>Land</th>
<th>Erfindungen im Ausland</th>
<th>Unternehmen mit Erfindungen (Anzahl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>32,3 %</td>
<td>72</td>
</tr>
<tr>
<td>Österreich</td>
<td>12,9 %</td>
<td>45</td>
</tr>
<tr>
<td>Frankreich</td>
<td>6,8 %</td>
<td>50</td>
</tr>
<tr>
<td>China</td>
<td>5,7 %</td>
<td>30</td>
</tr>
<tr>
<td>Großbritannien</td>
<td>5,1 %</td>
<td>48</td>
</tr>
<tr>
<td>Schweden</td>
<td>4,1 %</td>
<td>24</td>
</tr>
<tr>
<td>Italien</td>
<td>4,0 %</td>
<td>40</td>
</tr>
<tr>
<td>Schweiz</td>
<td>3,1 %</td>
<td>48</td>
</tr>
<tr>
<td>Dänemark</td>
<td>3,1 %</td>
<td>14</td>
</tr>
<tr>
<td>Japan</td>
<td>2,9 %</td>
<td>31</td>
</tr>
<tr>
<td>Süd Korea</td>
<td>2,8 %</td>
<td>23</td>
</tr>
<tr>
<td>Spanien</td>
<td>2,1 %</td>
<td>24</td>
</tr>
<tr>
<td>Niederlande</td>
<td>2,0 %</td>
<td>26</td>
</tr>
<tr>
<td>Singapur</td>
<td>1,4 %</td>
<td>16</td>
</tr>
<tr>
<td>Kanada</td>
<td>1,3 %</td>
<td>24</td>
</tr>
<tr>
<td>Indien</td>
<td>1,2 %</td>
<td>21</td>
</tr>
<tr>
<td>Belgien</td>
<td>1,1 %</td>
<td>25</td>
</tr>
<tr>
<td>Malaysia</td>
<td>1,1 %</td>
<td>13</td>
</tr>
<tr>
<td>Ungarn</td>
<td>0,8 %</td>
<td>11</td>
</tr>
<tr>
<td>Israel</td>
<td>0,7 %</td>
<td>11</td>
</tr>
<tr>
<td>Brasilien</td>
<td>0,6 %</td>
<td>12</td>
</tr>
<tr>
<td>Tschechische Republik</td>
<td>0,5 %</td>
<td>17</td>
</tr>
<tr>
<td>Mexiko</td>
<td>0,5 %</td>
<td>8</td>
</tr>
<tr>
<td>Norwegen</td>
<td>0,5 %</td>
<td>6</td>
</tr>
<tr>
<td>Rumänien</td>
<td>0,4 %</td>
<td>8</td>
</tr>
<tr>
<td>Polen</td>
<td>0,3 %</td>
<td>22</td>
</tr>
<tr>
<td>Restliche Länder</td>
<td>2,6 %</td>
<td>–</td>
</tr>
<tr>
<td>Insgesamt</td>
<td>100 %</td>
<td>104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Land</th>
<th>BASF</th>
<th>CONTINENTAL</th>
<th>INFINEON TECHNOLOGIES</th>
<th>ROBERT BOSCH</th>
<th>SIEMENS</th>
<th>VOLKSWAGEN</th>
<th>Insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>7,9 %</td>
<td>7,8 %</td>
<td>2,9 %</td>
<td>18,0 %</td>
<td>21,9 %</td>
<td>1,9 %</td>
<td>60,4 %</td>
</tr>
<tr>
<td>Österreich</td>
<td>0,2 %</td>
<td>0,9 %</td>
<td>64,3 %</td>
<td>3,8 %</td>
<td>9,6 %</td>
<td>2,3 %</td>
<td>80,9 %</td>
</tr>
<tr>
<td>Frankreich</td>
<td>4,9 %</td>
<td>22,9 %</td>
<td>0,1 %</td>
<td>11,2 %</td>
<td>4,7 %</td>
<td>0,7 %</td>
<td>44,5 %</td>
</tr>
<tr>
<td>China</td>
<td>3,2 %</td>
<td>1,5 %</td>
<td>0,4 %</td>
<td>29,4 %</td>
<td>22,0 %</td>
<td>0,5 %</td>
<td>57,0 %</td>
</tr>
<tr>
<td>Großbritannien</td>
<td>1,9 %</td>
<td>2,4 %</td>
<td>5,8 %</td>
<td>7,9 %</td>
<td>32,1 %</td>
<td>3,3 %</td>
<td>53,3 %</td>
</tr>
<tr>
<td>Schweden</td>
<td>0,1 %</td>
<td>0,1 %</td>
<td>0,1 %</td>
<td>2,3 %</td>
<td>6,7 %</td>
<td>82,6 %</td>
<td>91,8 %</td>
</tr>
<tr>
<td>Italien</td>
<td>1,2 %</td>
<td>14,1 %</td>
<td>10,4 %</td>
<td>7,2 %</td>
<td>12,1 %</td>
<td>2,5 %</td>
<td>47,5 %</td>
</tr>
<tr>
<td>Schweiz</td>
<td>10,3 %</td>
<td>0,0 %</td>
<td>1,2 %</td>
<td>25,4 %</td>
<td>15,5 %</td>
<td>3,4 %</td>
<td>55,8 %</td>
</tr>
<tr>
<td>Dänemark</td>
<td>0,4 %</td>
<td>11,4 %</td>
<td>0,0 %</td>
<td>0,3 %</td>
<td>82,5 %</td>
<td>0,4 %</td>
<td>95,0 %</td>
</tr>
<tr>
<td>Japan</td>
<td>9,6 %</td>
<td>0,6 %</td>
<td>0,0 %</td>
<td>16,6 %</td>
<td>1,4 %</td>
<td>0,7 %</td>
<td>28,9 %</td>
</tr>
<tr>
<td>Südkorea</td>
<td>56,6 %</td>
<td>2,7 %</td>
<td>1,7 %</td>
<td>18,0 %</td>
<td>0,5 %</td>
<td>1,0 %</td>
<td>80,4 %</td>
</tr>
<tr>
<td>Spanien</td>
<td>0,7 %</td>
<td>0,0 %</td>
<td>0,8 %</td>
<td>68,5 %</td>
<td>1,5 %</td>
<td>4,8 %</td>
<td>76,4 %</td>
</tr>
<tr>
<td>Niederlande</td>
<td>7,5 %</td>
<td>0,0 %</td>
<td>0,0 %</td>
<td>33,3 %</td>
<td>6,5 %</td>
<td>1,2 %</td>
<td>48,6 %</td>
</tr>
<tr>
<td>Singapur</td>
<td>3,9 %</td>
<td>3,2 %</td>
<td>63,6 %</td>
<td>0,6 %</td>
<td>63 %</td>
<td>0,0 %</td>
<td>77,6 %</td>
</tr>
<tr>
<td>Kanada</td>
<td>3,4 %</td>
<td>15,7 %</td>
<td>2,1 %</td>
<td>3,2 %</td>
<td>11,6 %</td>
<td>1,5 %</td>
<td>37,4 %</td>
</tr>
<tr>
<td>Indien</td>
<td>3,1 %</td>
<td>1,6 %</td>
<td>4,8 %</td>
<td>28,4 %</td>
<td>17,4 %</td>
<td>0,7 %</td>
<td>55,9 %</td>
</tr>
<tr>
<td>Belgien</td>
<td>10,5 %</td>
<td>3,2 %</td>
<td>0,0 %</td>
<td>25,2 %</td>
<td>4,0 %</td>
<td>1,1 %</td>
<td>43,9 %</td>
</tr>
<tr>
<td>Malaysia</td>
<td>0,8 %</td>
<td>0,9 %</td>
<td>68,8 %</td>
<td>6,0 %</td>
<td>2,9 %</td>
<td>0,0 %</td>
<td>79,5 %</td>
</tr>
<tr>
<td>Ungarn</td>
<td>0,1 %</td>
<td>3,4 %</td>
<td>0,0 %</td>
<td>34,6 %</td>
<td>0,0 %</td>
<td>0,3 %</td>
<td>38,4 %</td>
</tr>
</tbody>
</table>

Abbildung 17: Erfinder*innen von Infineon im Ausland nach Internationalisierungsstrategien 2012–2014 (Patentgewichte)

Abbildung 18: Erfinder*innen von Volkswagen im Ausland nach Internationalisierungsstrategien 2012–2014 (Patentgewichte)

Abbildung 19: Erfinder*innen von Continental im Ausland nach Internationalisierungsstrategien 2012–2014 (Patentgewichte)

Abbildung 20: Erfinder*innen von BASF im Ausland nach Internationalisierungsstrategien 2012–2014 (Patentgewichte)

Autorinnen und Autoren

Dr. Anselm Mattes ist Manager bei DIW Econ. Er ist Experte für die Analyse von regionalen Innovationssystemen sowie internationalen Handel und multinationale Unternehmen. Er berät zahlreiche öffentliche und private Auftraggeber, darunter die Bundesministerien für Verkehr und Infrastruktur, für Wirtschaft und Energie sowie die Europäische Kommission. Bevor er zu DIW Econ wechselte, war er wissenschaftlicher Referent am Institut für Angewandte Wirtschaftsforschung (IAW) in Tübingen. Er studierte Wirtschaftswissenschaften an der Universität Hohenheim und promovierte mit einer mikroökonomischen Arbeit über ausländische Direktinvestitionen an der Eberhard-Karls-Universität Tübingen.
Maximilian Priem ist Datenanalyst bei DIW Econ. Seine Schwerpunkte liegen in der angewandten Statistik, Mikroökonomie, Einstellungsfor- schung sowie der Datenaufbereitung und -visualisierung. Zuvor arbeitete er als Wissenschaftler am Sozio-oekonomischen Panel (SOEP) im DIW Berlin und am Institut für Soziologie der Freien Universität Berlin. Dort betreute er einen multinationalen Survey und dessen Auswertungen zum Thema „Solidarität in Europa“.
In dieser Studie werden Forschung und Entwicklung (FuE) deutscher Unternehmen im In- und Ausland anhand ihrer FuE-Aufwendungen und ihrer in Patentanmeldungen dokumentierten Erfindungstätigkeit untersucht. Für die 104 Forschungs- und patentstärksten deutschen Großunternehmen werden erstmals die technologischen Forschungsschwerpunkte in Deutschland und in verschiedenen Zielländern im Ausland für den Zeitraum 2012–2014 ausführlich dargestellt. Die Analyse liefert neue Anhaltspunkte für die Motive zur Internationalisierung von privater Forschung und Entwicklung.