Post-Keynesian Perspectives on Open Economy Macroeconomics

Robert A. Blecker Professor, Department of Economics and Affiliate Faculty, SIS and CLALS American University, Washington, DC, USA <u>blecker@american.edu</u>

Forum for Macroeconomics and Macroeconomic Policies (FMM) 27th Annual Conference Berlin, Germany, 19 October 2023

Theme: Conflict and cooperation in international trade

The orthodox view of international trade

- In neoclassical economics, international trade is generally cooperative
 - All countries gain by specializing according to comparative advantage
 - With the caveat of possible domestic redistributive effects
 - Stolper-Samuelson Theorem: Owners of the "scarce" factor lose from free trade
 - There are still net efficiency gains
- This optimistic view rests on several key assumptions, including:
 - Constant returns to scale
 - Full employment
 - Perfect competition
 - Exogenously given "factor endowments" and technology)
 - Trade is barter (always balanced, money and finance don't matter)

The post-Keynesian alternative

- Post-Keynesians reject those five assumptions
 - In the real world, we find increasing returns to scale, involuntary unemployment, imbalanced trade, and oligopoly/monopoly power
 - Accumulation of capital and technological change are endogenous
 - Competitive advantages are created, not "endowed"
 - Trade inherently involves monetary and financial relations

> The macroeconomic and developmental aspects of trade cannot be ignored

- Trade relations can be **conflictive** as well as cooperative
 - Robinson (1947) on the "beggar-thy-neighbour" character of trade policies and currency devaluations
 - Kaldor (1970) on cumulative causation and unequal "regional" growth
- To analyze this, we need to turn to the macro side \rightarrow

Plan of presentation

1. Short run

- Neo-Kaleckian open economy models and empirical estimates
- Focuses on competitive advantages in unit labor costs (ULC)
 - International competition affects whether demand is wage-led or profit-led

2. Medium run

- Export-led growth with cumulative causation
 - Kaldor-Verdoorn law; Dixon-Thirlwall/Setterfield-Cornwall model
- Virtuous or vicious cycles, convergence vs. divergence, path dependency

3. Long run

- Balance-of-payments-constrained growth (BPCG, or "Thirlwall's law")
 - Extensions: two large countries, structural change, relative price (RER) effects
- Sceptical views

1. Short Run

International competition in neo-Kaleckian models

Wage-led versus profit-led demand in an open economy (simple overview)

- International competitive effects help to determine whether a country has wage-led or profit-led demand (Lavoie & Stockhammer 2013)
 - Where π is the profit share and $\psi = 1 \pi$ is the wage share
- We expect that a rise in π will have the following **direct** effects on aggregate demand:

AD = Consumption + Investment + Govt Purch + Net Exports - + 0? +

- A stronger negative effect of higher labor costs on net exports and a higher share of trade in output increase the likelihood that demand is profit-led $(\partial AD/\partial \pi > 0)$
- Also FDI and GVCs can make investment inversely related to labor costs

Results from Onaran and Galanis (ILO, 2012)

				Total direct effect on			
	C/Y	I/Y	NX/Y	Private excess demand/Y			
	А	В	С	(A+B+C)			
Euro area-12	-0.439	0.299	0.057	-0.084			
Germany	-0.501	0.376	0.096	-0.029			
France	-0.305	0.088	0.198	-0.020			
Italy	-0.356	0.130	0.126	-0.100			
United Kingdom	-0.303	0.120	0.158	-0.025			
United States	-0.426	0.000	0.037	-0.388			
Japan	-0.353	0.284	0.055	-0.014			
Canada	-0.326	0.182	0.266	0.122			
Australia	-0.256	0.174	0.272	0.190			
Turkey	-0.491	0.000	0.283	-0.208			
Mexico	-0.438	0.153	0.381	0.096			
Korea	-0.422	0.000	0.359	-0.063			
Argentina	-0.153	0.015	0.192	0.054			
China	-0.412	0.000	1.986	1.574			
India	-0.291	0.000	0.310	0.018			
South Africa	-0.145	0.129	0.506	0.490			

- These are effects of a 1 pct. pt.
 rise in the profit share π
- Totals do not include multiplier effects (typo corrected)
- 0.000 indicates insignificant
- Effects on investment are often small or insignificant
- All economies are domestically wage-led: $\partial(C + I)/\partial \pi < 0$
- Usually NX makes the difference
- Smaller and more open economies tend to be more profit-led

Source: Onaran and Galanis, ILO Report, 2012, Table 11, p. 32.

Implications

- Countries with profit-led demand due to net export effects can gain by devaluing their currency or repressing wages (relative to productivity)
 - The same types of countries would be adversely impacted if their currencies appreciate or (relative) unit labor costs rise
 - Thus gains (in output and employment) for some countries can come at the expense of other countries
 - Similar to Robinson's "beggar-thy-neighbour" analysis of a devaluation, but with the added twist that it requires total private demand to be profit-led
- With wage-led demand, the competitive gains from a devaluation or wage cut are not sufficient to outweigh the negative effects on aggregate output
 - But the composition of output between tradable and nontradables goods and services can still be affected (with medium/long-run implications)

It's more complicated

- Overall (total) effects should include dynamic interactions between *C*, *I*, and *NX* that are not captured by separate estimation of "single equations"
 - So "adding up" the effects may not be accurate
- Income distribution is endogenous
 - Wage and profit shares may respond to changes in *Y* = *AD* and employment
 - So π (or ψ) is not exogenous
- Net exports (*NX*) are affected differently by different sources of variation in income distribution (Blecker, 1989, 1999)
 - A rise in relative unit labor costs (ULC) or currency appreciation decreases π and lowers NX
 - A fall in monopoly power decreases π but raises NX
 - Therefore demand may be **either** wage-led **or** profit-led in response to different shocks

Results from Blecker, Cauvel, and Kim (2022)

Table 1. Marginal effects of one standard deviation shocks to monopoly power and unit labour costs on the wage share (in percentage points) and private aggregate demand (as percentage of GDP)

		Model 1				Model 2		
Data are for the US economy. Models 1 an 2 use alternative proxic	d es	Wage share	Private demand		Wage share	Private demand		
for monopoly power.			All effects	Significant only		All effects	Significant only	
Fall in monopoly power, μ Rise in <i>ULC</i> , 1963–1981 Rise in <i>ULC</i> , 1982–2016	OLS GMM OLS GMM OLS GMM	0.86*** 0.86*** -0.57 -0.35 3.68*** 3.66***	0.66* 0.79*** -2.08*** -1.72*** -0.80 0.60	0.50*** 0.90*** -1.80*** -1.45*** -1.24* 1.14	2.62*** 2.33*** -2.11 -1.73 8.54*** 8.58***	1.14 1.66** -2.72** -2.66*** 1.29 4.15	0.00 0.90** -1.67*** -1.08*** 0.28 2.16*	

Source: Authors' calculations. Significance levels: *** 1%, ** 5%, * 10%.

Interpreting the results (GMM estimates)

- US private demand was wage-led in response to shocks to monopoly power of firms for the whole sample period, 1963-2016
 - Increased monopoly power reduced the wage share after 1980s
- For shocks to ULC (relative to foreign prices), results varied by subperiod:
 - Demand was strongly profit-led in response to ULC shocks in 1963-1981
 - It was weakly (insignificantly or 10% level) wage-led in response to ULC shocks in 1982-2016
- **Before** 1982, the US was a *relatively* closed economy
 - Oligopolistic firms could fully pass through increases in ULC into prices, but this hurt external competitiveness
- *Since* 1982, the US is a more open economy
 - Pass-through of ULC increases is partial and squeezes profit margins
 - In reality, wages have lagged behind productivity so ULC increased slowly resulting in a rising profit share, which (along with a mostly strong dollar) lessened competitive gains

Summary on short run

- International conflict is most intense for countries that have profit-led demand overall due to strong negative effects of ULC on Inv. and NX
 - Gains in market shares, output, and employment for some countries come at the expense of losses for others
 - For example, China vs. Mexico around 2001-2007
 - Or USA and UK vs. West Germany, Japan, South Korea, etc. in 1960s–70s
- Such conflict is partially mitigated if overall demand remains wage-led
 - Still, international competition affects net exports, with consequences for the *composition* of domestic industries (e.g., USA vs. China, early 2000s)
 - Import-competing sectors decline, export industries grow slowly, if a country is less competitive (opposite for a more competitive economy)
 - These compositional effects can have medium-run and long-run implications (next)

2. Medium Run

Cumulative causation and unequal growth in neo-Kaldorian models

Nicholas Kaldor on increasing returns and uneven development

- Kaldor (1966): growth of manufactures is key to overall growth and is characterized by increasing returns to scale (IRS)
 - Both static and dynamic IRS, including induced innovation
 - Cites Adam Smith, Allyn Young, Kenneth Arrow, P.J. Verdoorn
 - Reallocation of labor from agriculture to manufactures raises average productivity and boosts aggregate growth
- Kaldor (1970): invokes Myrdal's (1957) idea of "cumulative causation"
 - Positive feedbacks make success (or failure) self-reinforcing, implying:
 - "the region that is initially more developed industrially may gain from the progressive opening of trade *at the expense of* the less developed region...." (emphasis
 - "trade may *injure* one region to the greater benefit of the other"
 - "Regions" may be countries, country groups, or geographic areas within a single country

added)

Export-Led Growth with Cumulative Causation

(inspired by Dixon & Thirlwall 1975; Cornwall 1977; Setterfield & Cornwall 2002)

A note on notation

Growth rates of **quantity** variables are in <u>lower case</u>:

• Thus x is the growth rate of exports (X), y is the growth rate of income or output (Y), etc.

Rates of change in **nominal** variables (prices, wages, exchange rates) are indicated by <u>"hats" or circumflexes</u>:

- Thus \hat{P} is the inflation rate (rate of change in the price level P),
 - \hat{E} is the rate of nominal currency depreciation (rate of change in the exchange rate *E*, defined as home currency/foreign currency), etc.

A subscript *f* indicates a foreign variable

Math for export-led cumulative causation (ELCC) model (Dixon & Thirlwall, 1975; Setterfield & Cornwall, 2002)*

Reminder: lower-case Roman letters are quantities in growth rate form.

1) Export demand: $x = \varepsilon_X (\hat{P}_f - \hat{P}) + \eta_X y_f$

Assuming $\hat{E} = 0$ or *E* is constant

Export growth depends positively on changes in relative foreign prices and foreign income growth

2) Mark-up pricing: $\hat{P} = \hat{W} - q$

Price inflation = wage inflation – labor productivity growth (assuming the markup rate does not change in the long run)

3) Verdoorn's Law:

$$q = q_0 + \rho y$$

Supposed to reflect external economies of scale and/or endogenous technical progress

Labor productivity growth is an increasing function of output growth (dynamic increasing returns)

$$y = k_X(\omega_X x + \omega_A g_A)$$

Note: The original version omits the $\omega_A g_A$ term, so $\omega_X = 1$.

Where k_X is the Keynesian multiplier, g_A is the growth rate of exogenous domestic demand, and the ω 's are weights reflecting the export and domestic shares of autonomous demand

NOTES:.

*Based on presentations in Blecker & Setterfield (2019, chap. 8), Blecker (2013), Setterfield (2013).

Solving the models: parallel equations for the "foreign" country (rest-of-world)

Assuming a similarly-specified model for the "foreign" country:

• Markup pricing (with a constant markup):

$$\hat{P}_f = \hat{W}_f - q_f$$

• Verdoorn's Law:

$$q_f = q_0 + \rho_f y_f$$

• Some simplifying assumptions (factors assumed to be equal across countries):

$$\hat{W} = \hat{W}_f, \quad q_0 = q_{f,0}$$

>Note: this is one way to "close" the model, with some symmetry

• The countries still differ in the Verdoorn coefficients ρ and elasticities ε , η

ELCC model solution

• For the "home" country, the model boils down to 2 equations in 2 endogenous variables, q and y:

The Verdoorn equation or **"Productivity Regime" (PR)**: $q = q_0 + \rho y$

The other 3 equations solve for the **"Demand Regime" (DR)**: $y = \Omega + k_X \omega_X \varepsilon_X q$

with intercept $\Omega = k_X \left(\omega_A g_A + \omega_X \left[(\eta_X - \rho_f \varepsilon_X) y_f - \varepsilon_X q_0 \right] \right)$

Equilibrium solution:

$$y^* = \frac{\Omega + k_X \omega_x \varepsilon_x q_0}{1 - \rho k_X \omega_x \varepsilon_x}$$

Graphical Solution of ELCC Model

Conflict and cooperation in the export-led growth model

- Greater *foreign* technological dynamism (stronger foreign Verdoorn effects) *lowers* the *home* country's growth rate by slowing its export growth
 - Thus one country's faster growth of productivity comes at the expense of another country's slower growth
 - Formally, this a negative effect on the intercept Ω in the DR equation (red circled term):

$$\Omega = k_X \left(\omega_A g_A + \omega_X \left[(\eta_X - \rho_f \varepsilon_X) y_f - \varepsilon_X q_0 \right] \right)$$

• where q_0 here is actually foreign $q_{f,0}$

• But there is also room for international cooperation via expansionary Keynesian demand policies that raise y_f , assuming $\eta_X > \rho_f \varepsilon_X$ (green circled terms)

International divergence (or convergence)

If country A starts out ahead, it will increase the proportional gap with B (divergence)

If A starts out behind, it will close the gap with C (convergence or catch-up)

Important qualifications

- This is an aggregative model, but the positive feedbacks are mostly limited to manufactures, a few other industries, and modern services (IT etc.)
 - Disaggregating the model and incorporating structural change are needed extensions
- Kaldor (1970) originally spoke of the *more advanced* economies having increasing competitive advantages
 - But it's really the *fast-growing* economies that attain such cumulative advantages (as he recognized in Kaldor, 1981)
- With more than two countries, there can be several "winners"
 - A number of countries with different specializations can all benefit
 - The gains will still be concentrated
 - Other countries will grow more slowly or deindustrialize

"Provisional" or "conditional" equilibria

- The "equilibrium" of this model is **not** a long-run steady-state
 - Full employment and balanced trade are not guaranteed
 - Economies are normally in a "traverse" (transition) *toward* such a position
 - A country may never reach the model's equilibrium before the underlying conditions change (Setterfield 2002)
- Equilibria are subject to path-dependent shifts (Setterfield, 2013)
 - A particular growth regime (DR + PR) can generate *endogenous* changes in the underlying conditions that in turn alter the model's equilibrium
 - Exhaustion of a technological paradigm, strengthening (or weakening) of labor vs. capital, adjustments in wages or exchange rates, technological diffusion, etc.

Sympathetic critiques and extensions

- Too many positive self-reinforcing effects
 - Wage increases, currency appreciation, or spillovers of technology to other countries can eventually limit or reverse the gains (Blecker, 2013)
 - Previously less developed countries can leverage initially low labor costs combined with imported or improving technology to launch export-led growth drives
 - These countries can achieve cumulative gains and catch up with or even displace former leaders
- Qualitative vs. price competition
 - For many products, competitive advantages are based on product quality, technological superiority, branding, etc. rather than lower costs
 - Now augmented by monopolies over intangible assets, intellectual propertyk and network effects Durand & Milberg (2020)
 - This is not an either/or; both kinds of competition exist but for different types of goods and services (Caglayan & Demir, 2019; Pariboni & Paternesi Meloni, 2022; Blecker, 2023)

3. Long run

Balance-of-payments-constrained growth (BPCG) and extensions

Alternative heterodox views of long-run analysis

- Skeptical views
 - Kalecki (1971): "the long-run trend is but a slowly changing component of a chain of short-period situations; it has no independent entity"
 - Kaldor (1972): increasing returns and endogenous innovate imply path dependency
 - "the actual state of the economy during any one 'period' cannot be predicted except as a result of the sequence of events in previous periods which led up to it"
- More positive views
 - Sraffian supermultiplier model emphasizes a long-run steady-state (strong attractor) driven by growth of "autonomous demand" (Serrano, 1995; Freitas & Serrano, 2015)
 - Independent of income and non-capacity-creating
 - Open economy version: growth is export-led *and* balance-of-payments-constrained in the long run (Thirlwall, 1979)

The balance-of-payments-constrained growth (BPCG) model: basic version

- Originated by Thirlwall (1979), Thirlwall & Dixon (1979)
- Key assumptions (of basic model):
 - Trade must be balanced in the long run
 - Or there could be a sustainable current account imbalance or debt-GDP ratio
 - Goods are nationally differentiated, imperfect substitutes
 - Supplies are infinitely elastic (prices fixed in seller's currency)
 - Output (growth) is the adjusting variable in the long run
 - Relative prices (RERs) are either constant (on average, in the long run) or else have little impact (elasticity pessimism)
- Here we will focus on what this model and its extensions imply for conflict vs. cooperation in the international economy

The simplest BPCG model in growth rate form (no financial flows)

- Export demand: $x = \varepsilon_X (\hat{E} + \hat{P}_f \hat{P}) + \eta_X y_f$
- Import demand: $m = -\varepsilon_M (\hat{E} + \hat{P}_f \hat{P}) + \eta_M y$

Note: the nominal exchange rate *E* is explicitly included now.

• Balance of payments equilibrium (assuming zero net financial flows so CA = 0):

$$\hat{P} + x = \hat{E} + \hat{P}_f + m$$

The value of exports must grow at the same rate as the value of imports

- Note \hat{E} is the rate of nominal depreciation of the home currency (percentage increase in home currency/foreign currency)
- Some standard Marshall-Lerner assumptions:
 - One home and one foreign good which are imperfect substitutes, prices are fixed in seller's currency (no partial pass-through), exogenously given price & income elasticities

Thirlwall's (post) Keynesian solution

• Assuming that income (output) growth adjusts in the long run, we can solve for the BP-constrained growth rate of output:

$$y_B = \frac{(\varepsilon_X + \varepsilon_M - 1)(\hat{E} + \hat{P}_f - \hat{P}) + \eta_X y_f}{\eta_M}$$

most general solution (includes price effects)

- Thirlwall further assumes that relative price changes don't matter *in the long run* because of <u>either</u>
 - Elasticity pessimism: $\varepsilon_X + \varepsilon_M \approx 1$ <u>or</u>
 - Constant relative prices (RER): $\hat{E} + \hat{P}_f \hat{P} = 0$
- Then the solution simplifies to one of the following:

Two versions of Thirlwall's law (Perraton, 2003)

• **Strong form**: assuming *either* elasticity pessimism *or* constant RER

$$y_B = \frac{\eta_X}{\eta_M} y_f$$

• Weak form: *only* on the assumption of constant RER $(\hat{E} + \hat{P}_f - \hat{P} = 0)$

$$y_B = \frac{x}{\eta_M}$$

• Because in this case only,

$$x = \eta_X y_f$$

Policy implications of BPCG/Thirlwall's Law (I)

- **Exports** are still vital to LR growth, as in ELCC, but *for a different reason:*
 - To obtain the foreign exchange to finance necessary imports without a growing trade deficit and rising foreign debt
- Non-price or qualitative competition (reflected in the income elasticities η_X and η_M) is more important than price or cost competition
- Although the model is (external) demand-driven, supply factors also play a role
 - Greater (or more diversified) domestic productive capacity reduces η_M ; investment and innovation in export industries can increase η_X
 - These factors operate *only* through their impact on income elasticities

Policy implications of BPCG/Thirlwall's Law (II)

- "Mercantilist" trade policies (export-promotion *cum* import restrictions, or selective import liberalization) *can* make sense
 - If such policies effectively boost $\eta_X \underline{relative}$ to η_M
 - But <u>not</u> pure protectionism, if it simply closes markets and fails to promote exports
 - Enhanced access to foreign markets can potentially raise y_f
- Trade liberalization can **fail** to increase LR (BP-equilibrium) growth in fact it may even <u>lower</u> y_B – if it increases η_M proportionately more than x or $\eta_X y_f$
 - See Moreno-Brid (1998–99), Santos-Paulino & Thirlwall (2004), Pacheco-López (2005), others

Extensions of the basic BPCG model

- Two large countries
- Structural change (multisectoral model)
- Long-run relative price (real exchange rate) effects
- Small vs. large countries
- Reintroducing cumulative causation (Verdoorn's law)
- Endogenous income elasticities
- International capital (financial) flows
- Ecological constraints
- Distributive cycles

For surveys see Blecker & Setterfield (2019), Blecker (2022b)

Notes:

- 1) Some of these literatures overlap
- 2) We will focus on the ones most

relevant to conflict vs. cooperation.

Two large countries (McCombie, 1993)

- Implies potential for conflict *or* cooperation in macro policies:
- If one large country (A) adopts a fiscal expansion but the *other* country (B) does not, A will face growing BP (current account) deficits
 - The refusal of *B* to cooperate can force *A* to reverse its stimulus policy (conflict)
- A "global Keynesian solution" is also possible
 - If the other country (*B*) *also* adopts expansionary policies, *both* countries can grow faster without trade becoming imbalanced
 - Thus the model supports coordinated fiscal expansions (a form of cooperation)

The BPCG model with two large countries

Incorporating structural change: The "multisectoral Thirlwall's law" (MSTL)

Originally due to Araujo & Lima (2007), Gouvêa & Lima (2010).

- Aggregate income elasticities of export and import demand are weighted averages of industry-level elasticities:
 - For any given "home" country (Gouvêa & Lima, 2013):

where *i* indexes the good or industry, *t* indexes time, $\alpha_{i,t}$ and $\beta_{i,t}$ are the shares of good *i* in total exports and imports (respectively) at time *t*, $\eta_{X,i}$ and $\eta_{M,i}$ are the income elasticities of export and import demand for each good *i*, there are *G* total industries or goods, both the foreign growth rate $y_{f,t}$ and the domestic BP-equilibrium growth rate $y_{B,t}$ are time-varying, and

$$\sum_{i=1}^{G} \alpha_{i,t} = 1, \ \sum_{i=1}^{G} \beta_{i,t} = 1.$$

Note: The BP-equilibrium growth rate $y_{B,t}$ becomes time-varying.

Conflict or cooperation in the MSTL

- Shifting the **composition** of exports or imports (shares $\alpha_{i,t}$ and $\beta_{i,t}$) to goods with higher (lower) income elasticities raises (lowers) *average* elasticities
 - Structural change can affect the BP-equilibrium growth rate even if industry-level elasticities remain constant
- If some countries get more favorable shares, this can disadvantage *other* countries
 - More favorable means higher export shares $\alpha_{i,t}$ for high $\eta_{X,i}$ goods, lower import shares $\beta_{i,t}$ for high $\eta_{M,i}$ goods
 - Other countries could be saddled with the opposite, and their BP-equilibrium growth rates would decrease
 - Unless there is specialization in different products that all have high income elasticities for exports (possible for some countries, unlikely for all)

Relative price/real exchange rate (RER) effects in BPCG models

- The "canonical" Thirlwall model assumes no role for relative prices or the RER
 - These are assumed to either remain constant or have negligible effects in the long run
 - Only "qualitative" or "non-price competition" is supposed to matter
 - But these assumptions apply only to *continuous changes* in relative prices or the RER
- Several new theories have challenged this, arguing that changes in average levels of the RER can have a long-run impact

RER *level* effects in extended BPCG models: three approaches

- The RER (or other measure of relative prices or relative costs) affects the composition of exports and imports
 - RER depreciation induces structural change that raises (*weighted-average*) η_X relative to η_M (Setterfield & Ozcelik 2018; Cimoli et al. 2019)
- 2. The RER affects capital accumulation in tradable goods industries
 - A real depreciation raises profitability and encourages investment (Blecker 2007; Ibarra 2018)
 - This relaxes supply-side constraints on exports in "small open economies" (Razmi 2016)
- 3. A more competitive RER raises **income elasticities** for export products
 - **Export quality improves** via induced innovation, technological upgrading (sophistication effect), and encouraging new products (diversification effect) (Missio et al. 2017; Marconi et al. 2021)

Implications of RER effects for international conflict and uneven development

- All countries can't have a real depreciation at the same time
 - If some depreciate, others must appreciate
 - This can raise the BP-equilibrium growth rate for the depreciating country
 - But it's "beggar-thy-neighbour" (slower growth) for other countries (Robinson 1947)
- Depending on the model, countries whose RERs *appreciate* will experience
 - Compositional shifts toward exports with low income elasticities, imports with high ones
 - Less investment in tradable goods industries (Blecker 2007, Ibarra 2018)
 - Less qualitative improvements and lower income elasticities for exports
- Caution: Some sceptics don't believe RER effects are important in the long run
 - See Ribeiro et al. (2017b, 2020)

Empirical evidence on RER effects

As summarized in Blecker (*EJEEP*, forthcoming, 2023)

- **Exports**: Overwhelming evidence that RER depreciation boosts export growth, but with qualifications
 - Effects vary by type of products, advanced economies vs. EMDEs, and direction of trade
 - Usually significant for medium- and lower-technology/skill manufactures, insignificant for primary products and high technology
 - Caglayan & Demir (2019), Bottega & Romero (2021), Pariboni & Paternesi Meloni (2022), Palazzo & Rapetti (2023)
- **Growth**: Robust evidence that RER depreciation raises output growth, again with qualifications
 - Results are sensitive to econometric specifications, control variables, etc.
 - Econometric estimates mostly pertain to "medium run" time periods
 - Nonlinearities and asymmetries: negative effects of overvaluations are stronger than positive effects of undervaluation
 - Surveyed (with new results) in Rapetti (2020), Demir & Razmi (2022)

Why "medium run" effects are important: output levels versus growth rates

Missing elements and areas for future research: Global value chains (GVCs)

- In GVCs, manufacturing is often "offshored" to EMDEs, but with low value added
 - Big firms in advanced economies monopolize "intangible assets" (intellectual property, data centralization, network economies, etc.) (Durand & Milberg 2020)
 - The benefits are highly concentrated *within* these countries
- In this context, who gets the gains from cumulative causation/increasing returns?
 - Are nations even the right units of analysis?
- We need to extend our analyses to incorporate GVCs
 - One exception: Trigg (2020) extends the MSTL to GVCs
 - Countries with low value added in their exports have lower BP-equilibrium growth rates

Missing elements and areas for future research: **Middle-income trap** for EMDEs

- EMDEs can get significant job creation in manufacturing activities within GVCs
 - But they don't capture the rents from monopolies of intellectual assets
 - They are highly import-dependent (e.g., assembling imported components)
- Rapid productivity growth in export production does not necessarily spill over into domestic sectors
 - An extreme case is Mexico, whose aggregate growth has been extremely slow in spite of rapid expansion of manufactured exports
 - Ibarra & Blecker (2016), Blecker (2022a)
- Do our models offer (a) diagnoses and (b) policy alternatives?

Conclusions

- Post-Keynesian models of open economies offer significant insights into how international trade relations can be conflictive instead of cooperative
- The degree of conflict or cooperation depends on policies pursued and the strength of various effects
 - Coordinated fiscal stimulus allows room for cooperation; exchange rate policies tend to be more conflictive
 - Conflictive possibilities are stronger when RER or relative price effects are significant (debated)
- New features of the global economy call for new extensions of heterodox models
 - Especially GVCs and the middle-income trap

References

Araujo, R.A. (2013), Cumulative causation in a structural economic dynamic approach to economic growth and uneven development. *Structural Change and Economic Dynamics* 24: 130–140.

Araujo, R.A. and Lima, G.T. (2007), A structural economic dynamics approach to balance-of-payments-constrained growth. *Cambridge Journal of Economics* 31(5): 755–74.

Blecker, R.A. (1989), International competition, income distribution and economic growth. Cambridge Journal of Economics 13(3): 395-412.

Blecker, R.A. (1999), Kaleckian macro models for open economies. In J. Deprez and J.T. Harvey (eds.), *Foundations of International Economics: Post Keynesian Perspectives* (pp. 116–149). London: Routledge.

Blecker, R.A. (2007), The economic consequences of dollar appreciation for U.S. manufacturing profits and investment: a time-series analysis. *International Review of Applied Economics*, vol. 21 (4), 491–517.

Blecker, R.A. (2013), Long-run growth in open economies: export-led cumulative causation or a balance-of-payments constraint? In G.C. Harcourt and P. Kriesler (eds.), *The Oxford Handbook of Post-Keynesian Economics*, vol. I, *Theory and Origins*. Oxford: Oxford University Press, pp. 390–414.

Blecker, R.A. (2022a), Mexico: unequal integration and 'stabilizing stagnation. In L.R. Wray and F. Dantas, eds., *Handbook of Economic Stagnation*. London: Academic Press/Elsevier, 225–249.

Blecker, R.A. (2022b), New advances and controversies in the framework of balance-of-payments-constrained growth. In *Journal of Economic Surveys*, 36(2), 429–467.

Blecker, R.A. (2023), How important is the real exchange rate for exports and growth? *European Journal of Economics and Economic Policies: Intervention*, 20, forthcoming.

Blecker, R.A., M. Cauvel and YK Kim (2022), Systems Estimation of a Structural Model of Distribution and Demand in the US Economy. *Cambridge Journal of Economics*, 46 (2), 391–420.

Blecker, R.A. and Setterfield, M. (2019), *Heterodox Macroeconomics: Models of Demand, Distribution and Growth*. Cheltenham, UK: Edward Elgar. 49

Bottega, A. and Romero, J.P. (2021), Innovation, export performance and trade elasticities across different sectors. *Structural Change and Economic Dynamics* 58: 174–184.

Caglayan, M. and Demir, F. (2019), Exchange rate movements, export sophistication and direction of trade: the development channel and North-South trade flows. *Cambridge Journal of Economics*, 43(6): 1623–1652.

Cimoli, M., Pereima, J.B. and Porcile, G. (2019), A technology gap interpretation of growth paths in Asia and Latin America. *Research Policy* 48: 125–136.

Cornwall, J. (1977), Modern Capitalism: Its Growth and Transformation, London: Martin Robertson.

Demir, F., Razmi, A. (2022), The real exchange rate and development: theory, evidence, issues and challenges, in: *Journal of Economic Surveys*, 36(2), 386–428.

Dixon, R. and Thirlwall, A.P. (1975), A model of regional growth rate differences along Kaldorian lines. Oxford Economic Papers 27(2): 201–214.

Durand, C. and W. Milberg (2020), Intellectual monopoly in global value chains. Review of International Political Economy, 27(2), 404-429.

Freitas, F. and F. Serrano (2015), Growth rate and level effects, the stability of the adjustment of capacity to demand, and the Sraffian supermultiplier. *Review of Political Economy*, 27 (3), 258–81

Gouvêa, R.R. and Lima, G.T. (2010), Structural change, balance-of-payments constraint, and economic growth: evidence from the multisectoral Thirlwall's law. *Journal of Post Keynesian Economics* 33(1), 169–204.

Gouvêa, R.R. and Lima, G.T. (2013), Balance-of-payments-constrained growth in a multisectoral framework: a panel data investigation. *Journal of Economic Studies* 40(2): 240–254.

Ibarra, C.A. (2018), Asymmetric real-exchange-rate effects on capital accumulation: evidence from non-linear ARDL models for Mexico. *Latin American Economic Review* 27, article 10, <u>https://doi.org/10.1186/s40503-018-0057-x</u>.

Ibarra, C.A. and Blecker, R.A. (2016), Structural change, the real exchange rate and the balance of payments in Mexico, 1960–2012. *Cambridge Journal of Economics* 40(2): 507–539.

Kaldor, N. (1966), Causes of the Slow Rate of Economic Growth in the United Kingdom. Cambridge, UK: Cambridge University Press.

Kaldor, N. (1970), The case for regional policies. Scottish Journal of Political Economy, 17 (3), 337-48.

Kaldor, N. (1971), Conflicts in national economic objectives. Economic Journal, 81 (321), 1-16.

Kaldor, N. (1972), The irrelevance of equilibrium economics. Economic Journal, 82 (328), 1237-55.

Kaldor, N. (1981), The role of increasing returns, technical progress and cumulative causation in the theory of international trade and economic growth. *Economie Appliquée*, 34 (4), 593–617.

Kalecki, M. (1971), Selected Essays on the Dynamics of the Capitalist Economy, 1933–1970. Cambridge: Cambridge University Press.

Magacho, G.R. and McCombie, J. (2020), Structural change and cumulative causation: a Kaldorian approach. *Metroeconomica* 71(3): 633–660.

Marconi, N., Araujo, E., Brancher, M.C., Porto T.C. (2021), The relationship between exchange rate and structural change: an approach based on income elasticities of trade. *Cambridge Journal of Economics*, 45(6), 1297–1318.

McCombie, J.S.L. (1993), Economic growth, trade interlinkages, and the balance of payments constraint. *Journal of Post Keynesian Economics*, 15 (4), 471–505.

Missio, F.J., Araujo, R.A. and Jayme Jr., F.G. (2017), Endogenous elasticities and the impact of the real exchange rate on structural economic dynamics. *Structural Change and Economic Dynamics* 42: 67–75.

Myrdal, G. (1957), Economic Theory and Underdeveloped Regions. London: Duckworth.

Onaran, Ö. and G. Galanis (2012), Is aggregate demand wage-led or profit-led? National and global effects. Conditions of Work and Employment Series No. 40, Geneva: International Labour Office.

Palazzo, G., Rapetti, M. (2023), From macro to micro and macro back: macroeconomic trade elasticities in a developing economy. *Structural Change and Economic Dynamics*, 65, 223–252.

Pariboni, R., Paternesi Meloni, W. (2022), Exporting differently? The political economy of alternative export-led strategies. Hans-Böckler-Stiftung, FMM Working Paper No. 80, September.

Perraton, J. (2003), Balance of payments constrained growth and developing countries: an examination of Thirlwall's hypothesis. *International Review of Applied Economics* 17(1): 1–22.

Rapetti, M. (2020), The real exchange rate and economic growth: a survey. *Journal of Globalization and Development* 11(2): Article 20190024, https://www.degruyter.com/document/doi/10.1515/jgd-2019-0024/html.

Razmi, A. (2016), Correctly analysing the balance-of-payments constraint on growth. *Cambridge Journal of Economics* 40(6): 1581–1608.

Ribeiro, R.S.M., McCombie, J.S.L. and Lima, G.T. (2017a), A reconciliation proposal of demand-driven growth models in open economies. *Journal of Economic Studies* 44(2): 226–244.

Ribeiro, R.S.M., McCombie, J.S.L. and Lima, G.T. (2017b), Some unpleasant currency-devaluation arithmetic in a post Keynesian macromodel. *Journal of Post Keynesian Economics* 40(2): 145–167.

Ribeiro, R.S.M., McCombie, J.S.L. and Lima, G.T. (2020), Does real exchange rate undervaluation really promote economic growth? *Structural Change and Economic Dynamics* 52: 408–417.

Robinson, J. (1947), Essays in the Theory of Employment, 2nd ed. Oxford: Basil Blackwell.

Serrano, F. (1995), Long period effective demand and the Sraffian supermultiplier. Contributions to Political Economy, 14, 67–90.

Setterfield, M. (2002), A model of Kaldorian traverse: cumulative causation, structural change and evolutionary hysteresis. In: Setterfield, M. (ed.), *The Economics of Demand-Led Growth: Challenging the Supply-Side Vision of the Long Run*. Cheltenham, UK: Edward Elgar, 215–233.

Setterfield, M. and Cornwall, J. (2002), A neo-Kaldorian perspective on the rise and decline of the golden age. In M. Setterfield (ed.), *The Economics of Demand-Led Growth: Challenging the Supply-Side Vision of the Long Run* (pp. 67–82). Cheltenham, UK: Edward Elgar.

Setterfield, M. and Ozcelik, S. (2018), Is the balance of payments constrained growth rate time-varying? Exchange rate over valuation, policyinduced recessions, deindustrialization, and long run growth. In P. Arestis (ed.), *Alternative Approaches in Macroeconomics: Essays in Honour of John McCombie* (pp. 331–353). Cham, Switzerland: Palgrave Macmillan.

Thirlwall, A.P. (1979), The balance of payments constraint as an explanation of international growth rate differences. *Banca Nazionale del Lavoro Quarterly Review* 32 (128): 45–53.

Thirlwall, A.P. and Dixon, R.J. (1979), A model of export-led growth with a balance of payments constraint. In J.K. Bowers (ed.), *Inflation*, *Development and Integration: Essays in Honour of A. J. Brown* (pp. 173–192). Leeds, UK: Leeds University Press.

Trigg, A.B. (2020), Thirlwall's law and uneven development under Global Value Chains: a multi-country input-output approach. *Journal of Economic Structures* 9, article 4, <u>https://journalofeconomicstructures.springeropen.com/articles/10.1186/s40008-020-0178-7</u>.