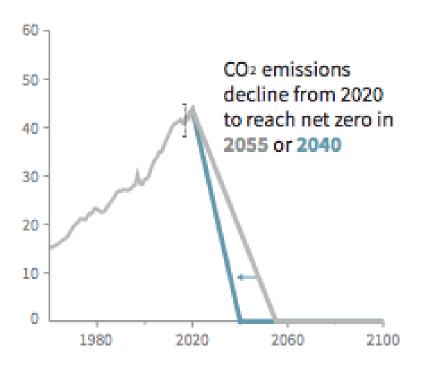

Macroeconomics of Degrowth

Dr. Steffen Lange IÖW – Institut für ökologische Wirtschaftsforschung, Berlin

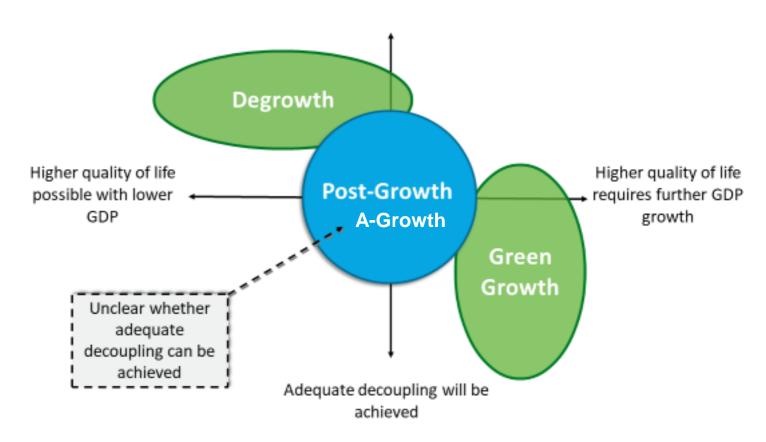

Content

Part I: Different strategies: Green Growth, A-Growth, Growth Independence, Degrowth

Part II: Macroeconomics of Zero Growth

Part I: Different strategies: Green Growth, A-Growth, Growth Independence, Degrowth

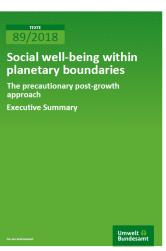
Motivation

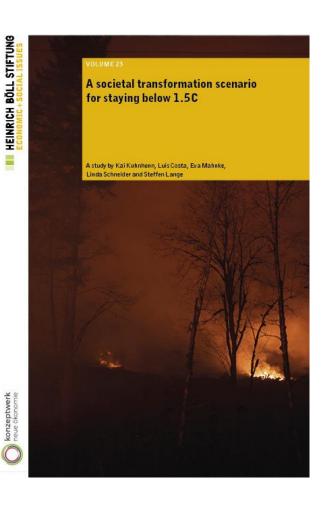


Faster immediate CO₂ emission reductions limit cumulative CO₂ emissions shown in panel (c).

IPCC Special Report on Global Warming of 1.5°C (2018).

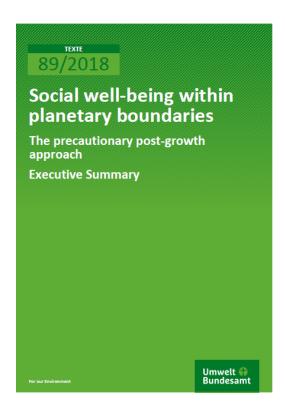
Different strategies

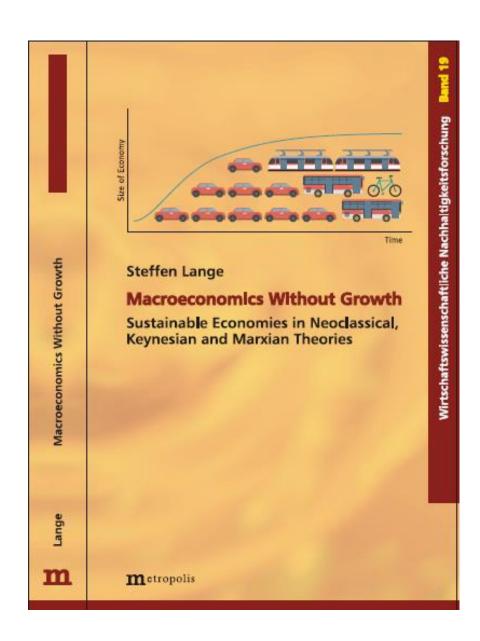

Adequate decoupling of economic output and resource consumption will not be achieved



A-Growth and Sufficiency

- Simple version: Cap-andtrade system for greenhouse gases
- More complex version:
 Various policies to reduce emissions
- Whether this leads to positive or negative growth does not matter
- Sufficiency measures part of this?

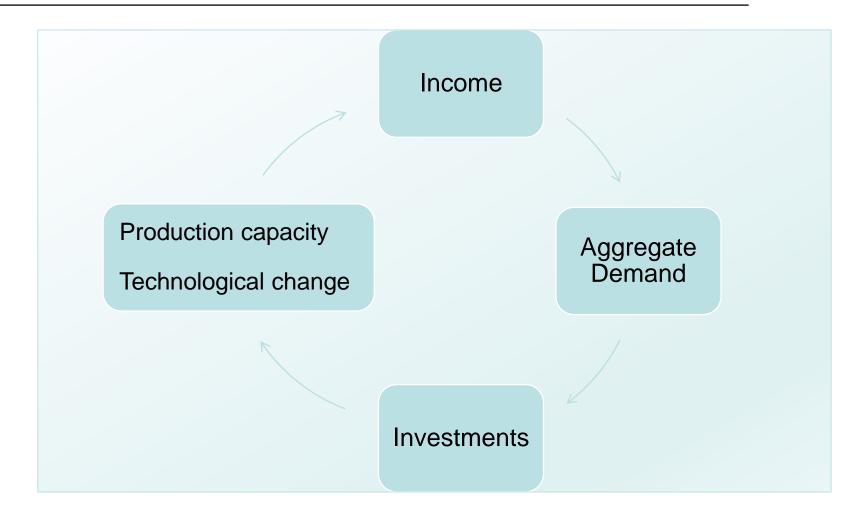



Growth Independence

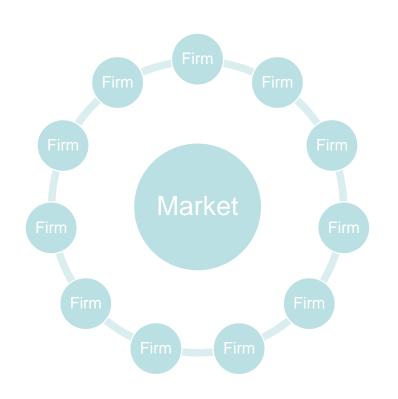
- Analysis:

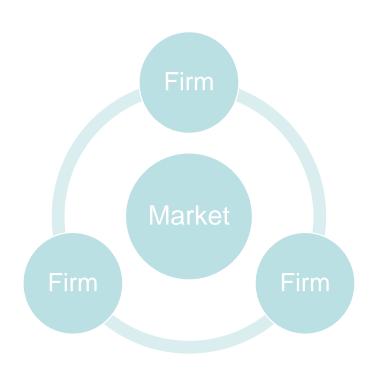
- Certain institutions are growth dependent
- Strict environmental policies might lead to economic shrinkage
- This would have strong negative social consequence – which is why the polices are not put into place
- Central examples:
 - Employment and wage income
 - Social security systems

Part II: Zero Growth


Plural Theories

NEOCLASSICAL THEORIES		
NEOCEASSICAE THEORIES		
Chapter 5		
Intr	oduction	
Chapte	er 6	
Fun	damentals	
6.1	Basic Macroeconomic Model: Neoclassical Foundations $$ 115	
6.2	Solow Model: Savings and Capital Accumulation 121	
6.3	Neoclassical Growth Model: Microfoundations 128	
6.4	Results and Discussion	
Chapte	er 7	
End	ogenous Technological Change	
7.1	AK Model: Human Capital and Improvement of Knowledge 143	
7.2	Endogenous Techn. Change I: Extension of Technologies . 147	
7.3	Endogenous Techn. Change II: Replacement of Technologies 150	
7.4	Directed Technical Change: Different Types of	
	Techn. Change	
7.5	Results and Discussion	
Chapte	er 8	
Env	ironment and Technology	
8.1	Dasgupta-Heal-Solow-Stiglitz Model: Substitution	
	and Techn. Change	
8.2	Green Solow Model: Abatement	
8.3	AK Model with Environment: Abatement	
	Depending on Techn. Change	
8.4	Endogenous Techn. Change with Environment:	
	Natural Resources	
8.5	Directed Technical Change with Environment:	
	Clean and Dirty Sectors	
8.6	Results and Discussion	


III KEYNESIAN THEORIES	1
Chapter 10	
Introduction	1
Chapter 11	
Fundamentals	2
11.1 Keynes: Effective Demand	22
11.2 Harrod: Warranted, Actual and Natural Growth 2	24
11.3 Domar: Capacity and Demand Effects	24
11.4 Neoclassical Synthesis: Aggregate Demand and	
Aggregate Supply	25
11.5 Kalecki: Investments and the Business Cycle	25
11.6 Kaldor: Technical Progress Function	27
11.7 Robinson: Biased Technical Change	28
11.8 Results and Discussion	28
Chapter 12	
Monetary Theories	9
12.1 Davidson: Revenue Expectations and Monetary Constraints 2	29
12.2 Monetary Keynesianism: Equilibrium Without a	
Labour Market	30
12.3 Binswanger: Growth Imperative and Growth Impetus 3	31
12.4 Godley and Lavoie: Stock-Flow Consistent Models 3	32
12.5 Results and Discussion	33
Chapter 13	
Environment and Demand	3
13.1 IS-LM-EE: Environmental Constraints	34
13.2 Harris: Clean and Dirty Sectors	34
13.3 Fontana and Sawyer: Environmental Depletion Rate 3	35
13.4 Results and Discussion	85


IV MARXIAN THEORIES	39
Chapter 15 Introduction	39
Chapter 16 Fundamentals 16.1 Marx: The Accumulation of Capital 16.2 Conditions for Sustainable Economies Without Growth 16.3 Results and Discussion	40
Chapter 17 Theory of Monopoly Capitalism 17.1 Monopoly Capitalism 17.2 Conditions for Sustainable Economies Without Growth 17.3 Results and Discussion	42
Chapter 18 Environment and Capitalism 18.1 Capital Accumulation With Fossil Fuels 18.2 Conditions for Sustainable Economies Without Growth 18.3 Results and Discussion	45 46

Keynesian Theories

Marxian Theories

Surprising results

- In neoclassical and Keynesian theories, zero growth is not a problem in principle
 - Central role of technological change
 - Business Cycle around zero growth (for example Kalecki)
 - Binswanger's theory of growth imperative depends on few assumptions
- In Marxian theories, zero growth more difficult. Reasons:
 - Interest to accumulate by capitalists
 - Coercion to invest and grow

Synthesis

Supply side

Increases in productivities need to be outbalanced by reductions in supply of production factors. For example:

Equivalence between reductions in labour supply $(-g_{LS})$ and growth in labour productivity (g_T)

$$-g_{LS}=g_T$$

Equivalence between reductions in resource supply $(-g_R)$ and growth in resource productivity (g_Γ)

$$-g_R = g_\Gamma$$

- and constant capital productivity and capital stock

$$g_K = 0$$

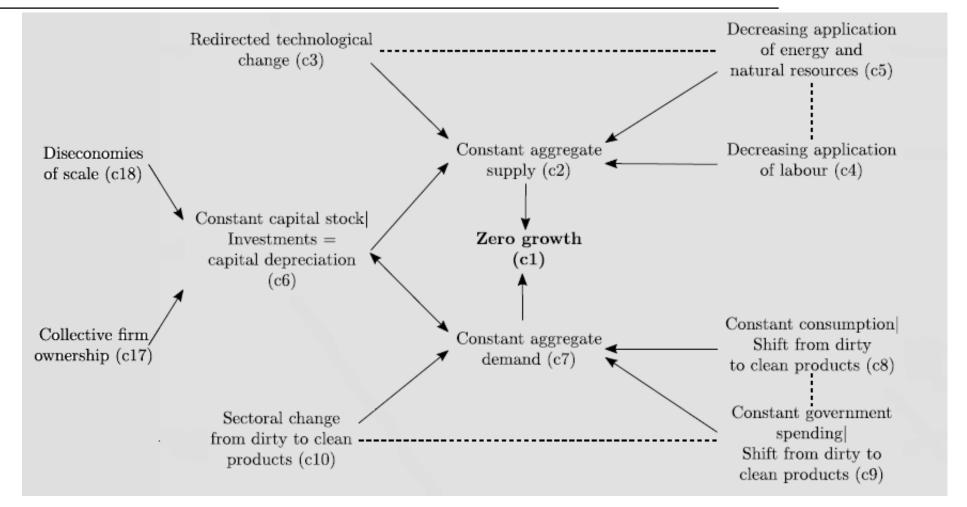
Demand side

Changes in different components of aggregate demand need to outbalance one another

$$\Delta I + \Delta C + \Delta G = 0$$

Assuming constant capital depreciation and a constant capital productivity, investments stay constant

$$\Delta I = 0$$

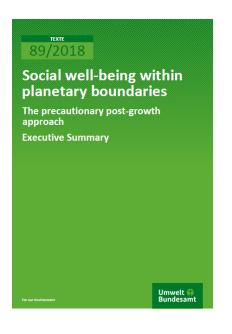

Therefore

$$\Delta C + \Delta G = 0$$

Savings equal investments

$$S = I$$

Synthesis



Relation to the growth and environment debate


- Important question: What is the cause for less/zero growth?
 - Strict environmental limits (exergy economics)
 - Redirected technological change combines reduced energy and resource consumption with high employment -> working hours reductions depend on degree of substitution between energy and labour
 - Less consumption and/or government spending
 - Necessity to redistribute work and/or provide income beyond wage-labour
 - Question of distribution always a central issue

Additional questions:

- What will capitalism in the economic sense do? In particular the financial system?
- What will the political economy of capitalism do?
- Relation to gender questions (wage vs. reproductive work)
- International competition

Thank you.

Dr. Steffen Lange IÖW – Institute for Ecological Economy Research, Berlin